## Homework 01

1. Section 2.2: 19, 25, 31, 33, 37, 41, 63, 77, 81, 87.

Remark: For problem 87, just find the limit. Need not plot it. To find the limit, use the algebraic identity ' $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$ '.

- 2. Section 2.2: Find  $\lim_{x\to 0} \sqrt{|x|} \cos \frac{1}{x}$ .
- 3. Section 2.3: problems 35, 43, 49, 53, 54.
- 4. Section 2.3: Suppose that f(x) is defined on  $(c-a,c) \cup (c,c+a)$  for some a>0. If f(x) satisfies the following statement, then is it true that  $\lim_{x\to c} f(x) = L$ ? Prove it if true, find a counter example if not true.

For any  $\varepsilon > 0$  and any  $\delta > 0$ , there exists a number  $x \in (c - \delta, c) \cup (c, c + \delta)$  such that  $|f(x) - L| < \varepsilon$ .

5. Section 2.3: Use the  $\varepsilon - \delta$  argument to prove the following statement:

If  $\lim_{x\to c} f(x) = L$  and  $\lim_{x\to c} g(x) = M$ , then  $\lim_{x\to c} \left(4f(x) - 2g(x)\right) = 4L - 2M$ .

Hint: Note that if a < b then -a > -b.