
Calculus I, Spring 2024 (Thomas’ Calculus Early Transcendentals 13ed), http://www.math.nthu.edu.tw/˜wangwc/

Brief solutions to selected problems in homework 15

1. Section 16.1: Solutions, common mistakes and corrections:

Figure 1: Solution to Section 16.1, problem 25

2. Section 16.3: Solutions, common mistakes and corrections:

Figure 2: Solution to Section 16.3, problem 21

1



Figure 3: Solution to Section 16.3, problem 26

3. Homework 15, problem 4:

Figure 4: Solution to problem 4(a)

2



Figure 5: Solution to problem 4(b)

Figure 6: Solution to problem 4(c)
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Problem 4(d): It is easier to explain the idea if we restrict problem 4 in the plane:

Let F =
x√

x2 + y2
i +

y√
x2 + y2

j and G =
−y

x2 + y2
i +

x

x2 + y2
j.

(a) Show that both F and G satisfy the component test.

(b) The natural domain of both F and G is {(x, y), x2 + y2 6= 0} (that is where F
and G are defined). Show that F is conservative in this domain by finding its
potential function.

(c) Show that G is NOT conservative in this domain (see Example 5 on p990).

(d) If given another H satisfying the component test in this domain, how do you
determine whether H is conservative?

Ans: It is clear that answers to (a), (b), (c) remain unchanged.

For (d): Suppose H satisfies the component test in {(x, y), x2 + y2 6= 0}. Let C be
any simple closed curve, and R be the inside of C.

(i) If (0, 0) 6∈ R.

In this case, R is simply connected. We can apply the 2D version of ’Compo-
nent Test for Conservative Field” statement on page 988, to conclude that (H is
conservative, and therefore) ffi

C

H · T ds = 0 (1)

(ii) If (0, 0) ∈ R, we consider the domain Rε = R \ {x2 + y2 ≤ ε2}. Note that Rε is
simply connected sine (0, 0) 6∈ Rε. Moreover, Rε = Rε,1 ∪Rε,2 as shown Figure 7.
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Figure 7:

Using the same argument as in case (a) above (replace R by Rε,1 and Rε,2, re-
spectively), we have ffi

∂Rε,1

H · T ds = 0,

ffi

∂Rε,2

H · T ds = 0

where ∂Rε,i is the boundary of the region Rε,i, i = 1, 2. As a result, we haveffi

C

H · T ds =

ffi

Cε

H · T ds (2)

where Cε = {(x, y), x2 + y2 = ε2}. Moreover, it is clear that the line integral in
(2) is independent of ε > 0.
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We conclude from the above analysis that,

(a) If

ffi

Cε

H · T ds 6= 0, then from Theorem 3 (loop property), H is not conservative.

(b) If

ffi

Cε

H · T ds = 0, then we conclude from (1), (2) that

ffi

C

H · T ds = 0 (3)

for every simple closed curve C.

If C is closed but not simple (i.e. C intersects itself), we can always decom-
pose C into several simple closed curves (break up at the intersection points and
reconnect), it follows that (3) remains valid even if C is not simple closed.

In summary, we have the following conclusion:

H is conservative ⇐⇒
ffi

C

H · T ds = 0 for any closed curve C ⇐⇒
ffi

Cε

H · T ds = 0

(4)

The conclusion (4) remains valid in 3D. The argument is similar, with the following
replacement of key words:

2D: If C is simple closed and (0, 0) 6∈ R. (3D: If C does not circle around the z-axis).

2D: If C is simple closed and (0, 0) ∈ R. (3D: If C circles around the z-axis once).

2D: Cε = {(x, y), x2 + y2 = ε2}. (3D: Cε = {(x, y, z = 0), x2 + y2 = ε2}).
2D: If C is not simple closed. (3D: If C circles around the z-axis more than once).
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4. Problem 5:

Method 2: By observation (or whatever methods), we know that F = ∇
√
x2 + y2 + z2,

therefore F is conservative.
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