Brief solutions to selected problems in homework 09

1. Section 14.4: Solutions, common mistakes and corrections:
$w=\ln \left(x^{2}+y^{2}+z^{2}\right), x=u e^{v} \sin u$,

$$
\begin{aligned}
& y=u e^{v} \cos u \cdot(u, v)=(-i, 0) \\
& z=u e^{v}
\end{aligned}
$$

$$
\frac{\partial w}{\partial u}=\frac{\partial w}{\partial x}+\frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} x \frac{\partial y}{\partial u}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial u}=\left(w_{x} \cdot w_{y}, w_{z}\right) \cdot\left(\frac{d x}{d u}, \frac{d y}{d u}, \frac{d z}{d u}\right)
$$

$$
=\left[\frac{2 x}{x^{2}+y^{2}+z^{2}}\right) \cdot e^{u}(u \cos u+\sin u)+\left[\frac{2 y}{x^{2}+y^{2}+z^{2}}\right] e^{u}(\cos u-u \sin u)+\left[\frac{-2 z}{x^{2}+y^{2}+z^{2}}\right) \cdot e^{v}
$$

$$
=\frac{\sin 2}{2}<1 \times(-2 \cos 2-\sin 2)-\frac{\cos 2}{2} \times 1 \times(\cos 2-2 \sin 2)-\frac{1}{2}
$$

$$
=-\left(\frac{1}{2}\right)-\frac{1}{2}=-1
$$

$$
\frac{d \omega}{\partial v}=\frac{\sin 2}{2}\left(u \sin e^{\prime \prime}\right)-\frac{\cos }{2}\left(u \cos 4 e^{v}\right)-\frac{1}{2} u
$$

$$
=\sin ^{2} 2+\cos ^{2} 2-\frac{1}{2} x-2=1+1-2 .
$$

Figure 1: Solution to Section 14.4, problem 10, method 1

Figure 2: Solution to Section 14.4, problem 10, method 2

Figure 3: Solution to Section 14.4, problem 43

Remark: There may be some confusion in the statement of Problem 43. It should have been written as following:
let $f(u, v, w)$ be differentiable and $g(x, y, z)=f(u, v, w)$ where $u=x-y, v=y-z$, $w=z-x$. Show that $\frac{\partial g}{\partial x}+\frac{\partial g}{\partial y}+\frac{\partial g}{\partial z}=0$

Figure 4: Solution to Section 14.4, problem 51
Remark: The meaning of $G_{u} \cdot \frac{d u}{d x}+G_{x} \cdot \frac{d x}{d x}$ is quite clear in the context. Alternatively, one could write it as $\partial_{1} G \cdot \frac{d u}{d x}+\partial_{2} G \cdot \frac{d x}{d x}$ to avoid potential confusion about what $G_{x}(u(x), x)$ really means.
2. Section 14.5: Solutions, common mistakes and corrections:

Figure 5: Solution to Section 14.5, problem 29

Figure 6: Solution to Section 14.5, problem 35

Figure 7: Solution to Homework 08, problem 2, part 1

Figure 8: Solution to Homework 08, problem 2, part 2
3. Problem 3:

Figure 9: Problem 3

Figure 10: Problem 3, continued

Figure 11: Problem 3, continued
4. (Extra credit, very hard!) True or False?

If $f_{x}(0,0), f_{y}(0,0)$ and $D_{(\cos \theta, \sin \theta),(0,0)} f$ all exist and

$$
D_{(\cos \theta, \sin \theta),(0,0)} f=f_{x}(0,0) \cos \theta+f_{y}(0,0) \sin \theta, \text { for all } \theta \in[0,2 \pi],
$$

then f is differentiable at $(0,0)$.

