Brief solutions to selected problems in homework 08

1. Section 14.3: Solutions, common mistakes and corrections:

Figure 1: Solution to Section 14.3, problem 21

Figure 2: Solution to Section 14.3, problem 60

$$
\begin{align*}
& \text { 0) } \frac{\partial y}{\partial x}=0=V_{x} \ln u+V \cdot \frac{U_{x}}{u} \\
& \text { (0) }-\frac{\partial x}{\partial x}=1=u \frac{1}{u} \frac{v x}{\ln v} \\
& \text { (1) } \times \frac{1}{\operatorname{Lva} a}=v_{x} \frac{v}{u}+\frac{V_{c}}{L_{x}}=0 \\
& \text { (2) }- \text { (3) }-1=V_{x}\left(\ln u-\frac{1}{\ln v}\right) \\
& \Rightarrow u_{x}=\frac{\ln v}{\ln \ln v-1}
\end{align*}
$$

Figure 4: Solution to Section 14.3, problem 72

Remark: Method 2 is the correct way of calculating $f_{x y}(0,0)$. In contrast, method 1 calculates $\lim _{y \rightarrow 0} f_{x}(0, y)$. Although they are the same in this problem, they need not be the same in general.
There are examples where $g^{\prime}(0)$ exists but $\lim _{y \rightarrow 0} g^{\prime}(y)$ does not exist $\left(g(y)=y^{2} \sin \left(\frac{1}{y}\right)\right.$ for $y \neq 0$ and $g(0)=0)$.
To complete method 1 , one needs to verify that $f_{x}(0, y)$ is continuous in y, then apply the Mean Value Theorem to $f_{x}(0, y)$ to conclude that $f_{x y}(0,0)=\lim _{y \rightarrow 0} f_{x}(0, y)$ (more complicated).

Figure 5: Solution to Section 14.3, problem 91

Figure 6: Solution to Homework 08, problem 2, part 1

Figure 7: Solution to Homework 08, problem 2, part 2

