Calculus I, Spring 2024 (Thomas’ Calculus Early Transcendentals 13ed), http://www.math.nthu.edu.tw/~ wangwc/
Brief solutions to selected problems in homework 03

1. Section 10.3: Solutions, common mistakes and corrections:
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Figure 2: Solution to Section 10.3, problem 31
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Figure 4: Solution to Section 10.3, problem 55



2. Section 10.4: Solutions, common mistakes and corrections:

Figure 6: Solution to Section 10.4, problem 17
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Answer:
case I p>1,¢<0.
Take p = 1.5, ¢ = —2.3 for example. Since Inn > 1 for n > 3, we have
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Therefore Z— converges by the Comparison Test.
n=2

The same argument works for any p > 1, ¢ < 0. Just replace 1.5 by p and —2.3 by gq.
case II: p > 1, ¢ > 0.
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Take p = 1.5, ¢ = 3.0 for example. Let a,, = 5
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Since a, > 15 for n > 3, comparing Zan with Z F (convergent) leads to no

n=2 =
conclusion.
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We need to compare a,, with b, = — by choosing an r so that 1 < r < p. Therefore
n""
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we take r = — = 1.25, b, = and apply the Limit Comparison Test:
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Instead of applying L’Hopital’s Rule to lim ——— (Inn)? = lim —( nn) directly, we notice
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The limit lim nn
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— is easier to compute. By L’Hopital’s Rule:
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Since g b, converges, we know from the Comparison Test that E a, also converges.
n=2 n=2

Again, the same argument works for any p > 1, ¢>0and 1 <r < p.



,0<p<1.
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Answer: The proof for problem 62 is similar:

case III: 0 <p < 1,q>0.

=1

Compare it with E —

n
> (Inn)? =1
ey
np np

n=3 n=3

(In n)

Since Z— = oo for 0 < p < 1, we know by the Comparison Test that Z

diver ges

case IV: 0 <p <1, ¢<0.
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Compare it with Z—, p <r <1 (take r = ’%1 for example). The rest of the
n’l"
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calculation is similar to case II and leads to the conclusion that Z diverges.

n=2
5. Section 10.5, problem 25:
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3 —= lima, #0, = Zan diverges.
n—oo
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Since lim |a,| = ¢
n—oo
6. Section 10.5: Solutions, common mistakes and corrections:
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Figure 7: Solution to Section 10.5, problem 65
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no conclusion

Figure 8: Solution to Section 10.5, problem 41, part 1
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Figure 9: Solution to Section 10.5, problem 41, part 2



