Brief solutions to selected problems in homework 03

1. Section 10.3: Solutions, common mistakes and corrections:

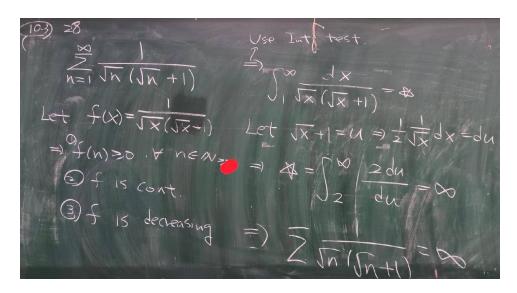


Figure 1: Solution to Section 10.3, problem 28

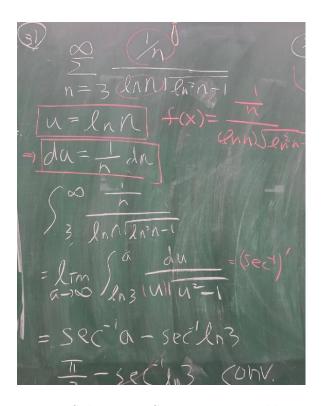


Figure 2: Solution to Section 10.3, problem 31

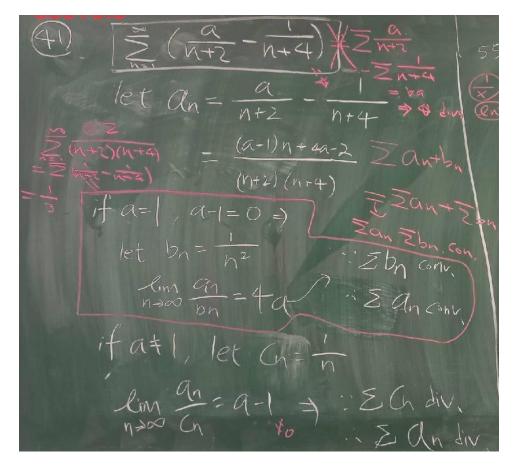


Figure 3: Solution to Section 10.3, problem 41

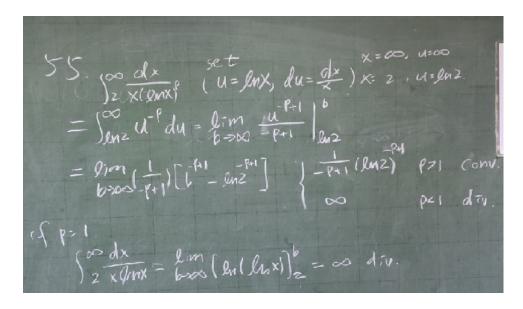


Figure 4: Solution to Section 10.3, problem 55

2. Section 10.4: Solutions, common mistakes and corrections:

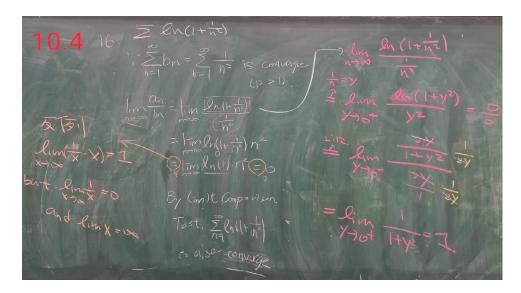


Figure 5: Solution to Section 10.4, problem 16

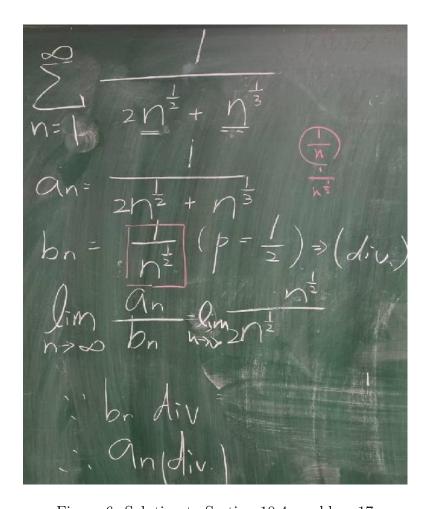


Figure 6: Solution to Section 10.4, problem 17

3. Section 10.4, problem 61: $\sum_{n=2}^{\infty} \frac{(\ln n)^q}{n^p}$, p > 1.

Answer:

case I: p > 1, $q \le 0$.

Take $p=1.5,\,q=-2.3$ for example. Since $\ln n>1$ for $n\geq 3$, we have

$$\sum_{n=3}^{\infty} \frac{(\ln n)^q}{n^p} = \sum_{n=3}^{\infty} \frac{1}{(\ln n)^{2.3} n^{1.5}} < \sum_{n=3}^{\infty} \frac{1}{n^{1.5}} < \infty.$$

Therefore $\sum_{n=2}^{\infty} \frac{(\ln n)^{-2.3}}{n^{1.5}}$ converges by the Comparison Test.

The same argument works for any p > 1, $q \le 0$. Just replace 1.5 by p and -2.3 by q. case II: p > 1, q > 0.

Take p = 1.5, q = 3.0 for example. Let $a_n = \frac{(\ln n)^{3.0}}{n^{1.5}}$.

Since $a_n > \frac{1}{n^{1.5}}$ for $n \geq 3$, comparing $\sum_{n=2}^{\infty} a_n$ with $\sum_{n=2}^{\infty} \frac{1}{n^{1.5}}$ (convergent) leads to no conclusion.

We need to compare a_n with $b_n = \frac{1}{n^r}$ by choosing an r so that 1 < r < p. Therefore we take $r = \frac{1+p}{2} = 1.25$, $b_n = \frac{1}{n^{1.25}}$, and apply the Limit Comparison Test:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(\ln n)^q}{n^{p-r}} = \lim_{n \to \infty} \frac{(\ln n)^{3.0}}{n^{1.5 - 1.25}}$$

Instead of applying L'Hôpital's Rule to $\lim_{n\to\infty}\frac{(\ln n)^q}{n^{p-r}}=\lim_{n\to\infty}\frac{(\ln n)^{3.0}}{n^{1.5-1.25}}$ directly, we notice that

$$\lim_{n\to\infty}\frac{(\ln n)^q}{n^{p-r}}=\lim_{n\to\infty}\left(\frac{\ln n}{n^{\frac{p-r}{q}}}\right)^q=\left(\lim_{n\to\infty}\frac{\ln n}{n^{\frac{p-r}{q}}}\right)^q=\left(\lim_{n\to\infty}\frac{\ln n}{n^{\frac{1.5-1.25}{3.0}}}\right)^{3.0}$$

The limit $\lim_{n\to\infty}\frac{\ln n}{n^{\frac{p-r}{q}}}$ is easier to compute. By L'Hôpital's Rule:

$$\lim_{n \to \infty} \frac{\ln n}{n^{\frac{p-r}{q}}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\left(\frac{p-r}{q}\right)n^{\frac{p-r}{q}-1}} = \lim_{n \to \infty} \frac{1}{\left(\frac{p-r}{q}\right)n^{\frac{p-r}{q}}} = \lim_{n \to \infty} \frac{1}{\left(\frac{1.5-1.25}{3.0}\right)n^{\frac{1.5-1.25}{3.0}}} = 0$$

Therefore

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \left(\lim_{n \to \infty} \frac{\ln n}{n^{\frac{p-r}{q}}}\right)^q = 0$$

Since $\sum_{n=2}^{\infty} b_n$ converges, we know from the Comparison Test that $\sum_{n=2}^{\infty} a_n$ also converges. Again, the same argument works for any p > 1, q > 0 and 1 < r < p.

4. Section 10.4, problem 62: $\sum_{n=2}^{\infty} \frac{(\ln n)^q}{n^p}$, 0 .

Answer: The proof for problem 62 is similar:

case III: 0 .

Compare it with $\sum_{n=3}^{\infty} \frac{1}{n^p}$:

$$\sum_{n=3}^{\infty} \frac{(\ln n)^q}{n^p} > \sum_{n=3}^{\infty} \frac{1}{n^p}$$

Since $\sum_{n=3}^{\infty} \frac{1}{n^p} = \infty$ for $0 , we know by the Comparison Test that <math>\sum_{n=2}^{\infty} \frac{(\ln n)^q}{n^p}$ diverges.

case IV: 0

Compare it with $\sum_{n=3}^{\infty} \frac{1}{n^r}$, p < r < 1 (take $r = \frac{p+1}{2}$ for example). The rest of the calculation is similar to case II and leads to the conclusion that $\sum_{n=2}^{\infty} \frac{(\ln n)^q}{n^p}$ diverges.

5. Section 10.5, problem 25:

Since
$$\lim_{n \to \infty} |a_n| = e^{-3}$$
, $\Longrightarrow \lim_{n \to \infty} a_n \neq 0$, $\Longrightarrow \sum_{n=1}^{\infty} a_n$ diverges.

6. Section 10.5: Solutions, common mistakes and corrections:

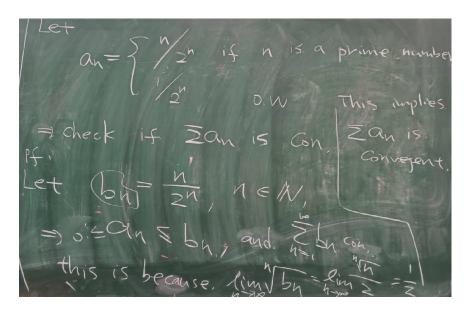


Figure 7: Solution to Section 10.5, problem 65

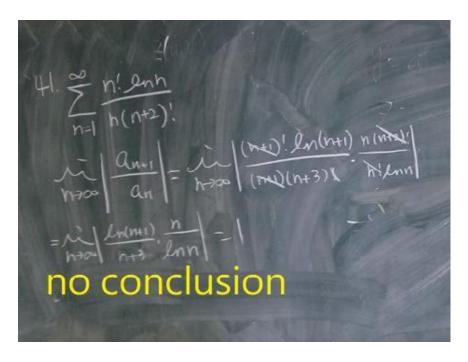


Figure 8: Solution to Section 10.5, problem 41, part 1

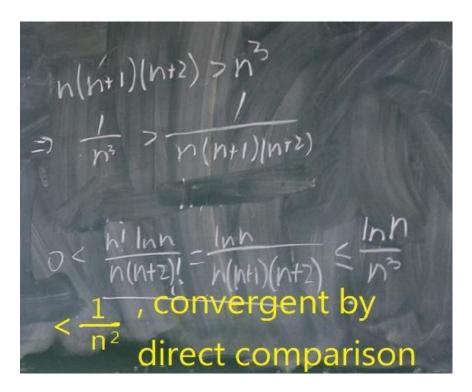


Figure 9: Solution to Section 10.5, problem 41, part 2