Brief solutions to selected problems in homework 02

1. Section 8.8: Solutions, common mistakes and corrections:

Figure 1: Solution to Section 8.8, problem 41

$=2 \int_{0}^{1} \ln x d x$
$=2 \lim _{a \rightarrow 0^{+}} \int_{a}^{1} \ln x d x$

$=2\left(-1-\lim _{a \rightarrow 0^{+}} a / / a-\alpha \alpha\right)$
$=-2$
Figure 2: Solution to Section 8.8, problem 45

Figure 3: Solution to Section 8.8, problem 55

Figure 4: Solution to Section 8.8, problem 65

Figure 5: Solution to Section 8.8, problem 66
2. Section 8.8: Homework 02, problem 2:

Figure 6: Solution to Section homework 02, problem 2
Remark: An alternative approach: Compare with $\int_{e}^{\infty} \frac{1}{x^{0.7}} d x$.
3. Section 8.8: Homework 02, problem 3:

Figure 7: Solution to Section homework 02, problem 3

Remark: An alternative approach: Compare with $\int_{0}^{\frac{1}{e}} \frac{1}{x^{1.5}} d x$.
4. Section 10.1: Solutions, common mistakes and corrections:

- Section 10.1, problem 46:

Answer:

Since

$$
0 \leq \frac{\sin ^{2} n}{2^{n}} \leq \frac{1}{2^{n}}
$$

and

$$
\lim _{n \rightarrow \infty} 0=0=\lim _{n \rightarrow \infty} \frac{1}{2^{n}},
$$

we conclude from the Sandwich Theorem for sequence that

$$
\lim _{n \rightarrow \infty} \frac{\sin ^{2} n}{2^{n}}=0 .
$$

- Section 10.1, problem 59:

Answer:
Since

$$
\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1, \quad \lim _{n \rightarrow \infty} \ln n=\infty
$$

we have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\ln n}{n^{\frac{1}{n}}}=\infty \text { (diverges). }
$$

5. Section 10.2: Solutions, common mistakes and corrections:

- Section 10.2, problem 43 :

Answer:
From the identity

$$
a_{n}=\frac{40 n}{(2 n-1)^{2}(2 n+1)^{2}}=5\left(\frac{1}{(2 n-1)^{2}}-\frac{1}{(2 n+1)^{2}}\right),
$$

we have

$$
s_{k}=\sum_{n=1}^{k} a_{n}=5\left(\frac{1}{(2 \cdot 1-1)^{2}}-\frac{1}{(2 \cdot 2-1)^{2}}+\frac{1}{(2 \cdot 2-1)^{2}}-\cdots-\frac{1}{(2 \cdot k+1)^{2}}\right)=5\left(1-\frac{1}{(2 k+1)^{2}}\right)
$$

Therefore

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{k \rightarrow \infty} s_{k}=5
$$

- Section 10.2, problem 61:

Answer:
Since $\lim _{n \rightarrow \infty} a_{n}=\infty \neq 0$, we conclude from the n-th term test that $\sum_{n=1}^{\infty} a_{n}$ diverges.

- Section 10.2, problem 65:

Answer:

From the identity

$$
a_{n}=\ln \left(\frac{n}{n+1}\right)=\ln n-\ln (n+1),
$$

we have

$$
s_{k}=\sum_{n=1}^{k} a_{n}=\ln 1-\ln 2+\ln 2-\ln 3+\cdots-\ln (k+1) .
$$

Therefore

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{k \rightarrow \infty} s_{k}=-\infty \text { (diverges) }
$$

- Section 10.2, problem 78:

Answer:
The geometric series $\sum_{n=0}^{\infty}(\ln x)^{n}$ converges $\Longleftrightarrow|\ln x|<1 \Longleftrightarrow \frac{1}{e}<x<e$.
When $\frac{1}{e}<x<e, \sum_{n=0}^{\infty}(\ln x)^{n}=\frac{1}{1-\ln x}$.

