Homework 09

1. Section 14.4: Problems 1, 7, 10, 21, 24, 29, 31, 43, 51.
2. Section 14.5: Problems 9, 15, 19, 25, 27, 29, 35, 36, 40 (See page 850).
3. Section 14.5: Let $f_{1}(x, y)=\sqrt{x^{2}+y^{2}}{ }^{\frac{1}{2}}=\left(x^{2}+y^{2}\right)^{\frac{1}{4}}$, $f_{2}(x, y)=2 x+3 y+4+\sqrt{x^{2}+y^{2^{2}}}=2 x+3 y+4+\left(x^{2}+y^{2}\right)^{\frac{3}{4}}$ and $f_{3}(x, y)=\frac{x^{3}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0), f_{3}(0,0)=0$.
(a) Are f_{i} continuous at $(0,0)$?
(b) Do $\partial_{x} f_{i}$ and $\partial_{y} f_{i}$ exist at $(0,0)$?
(c) Use the definition of directional derivative to evaluate $\frac{d f_{i}}{d s}(0,0),(\cos \theta, \sin \theta)$, ,i.e. the directional derivative of f_{i} at $\left(x_{0}, y_{0}\right)=(0,0)$ in the direction $(\cos \theta, \sin \theta)$, if it exists.
(d) Are f_{i} differentiable at $(0,0)$?

Hint:
i. If you know or guess that f is differentiable at $\left(x_{0}, y_{0}\right)$, you can try to prove it using Theorem 3 (Section 14.3, page 832). It may or may not work.
ii. If you know or guess that f is NOT differentiable at $\left(x_{0}, y_{0}\right)$, you can try to prove it using Theorem 4 (Section 14.3, page 832) or Theorem 9 (Section 14.5 , page 847). It may or may not work.
iii. Note: You definitely CANNOT use Theorem 3 in (ii) or Theorem 4, Theorem 9 in (i). If you don't know whether f is differentiable at $\left(x_{0}, y_{0}\right)$ or not, it is always safe to follow the definition as outlined in page 7 of Lecture 15. It almost always works.

