Homework 08

1. Section 14.3: Problems 19, 21, 53, 60, 65, 67, 69, 72, 81, 91.

Hint for problem 72:
To compute

$$
f_{x y}(0,0)=\lim _{y \rightarrow 0} \frac{f_{x}(0, y)-f_{x}(0,0)}{y-0}
$$

we need $f_{x}(0, y)$ for $y \neq 0$ (direct differentiation) and

$$
f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x-0} .
$$

The procedure for computing $f_{y x}(0,0)$ is similar.
2. Section 14.3: Further explanation on definition of differentiability on Lecture 14, page 6 :

Show that

$$
\begin{equation*}
h(x, y)=\varepsilon_{1} \cdot\left(x-x_{0}\right)+\varepsilon_{2} \cdot\left(y-y_{0}\right) \text { with } \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left(\varepsilon_{1}, \varepsilon_{2}\right)=(0,0) \tag{1}
\end{equation*}
$$

is the same as

$$
\begin{equation*}
h(x, y)=\varepsilon \cdot \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \text { with } \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \varepsilon=0 . \tag{2}
\end{equation*}
$$

That is, if $h(x, y)$ is given by (1), then it can be rewritten (combined) as (2). Also, if $h(x, y)$ is given by (2), then it can be rewritten (split) as (1).
Hint: Use

$$
\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\frac{\Delta x}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}} \Delta x+\frac{\Delta y}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}} \Delta y
$$

or

$$
\begin{gathered}
|\Delta x| \leq \sqrt{(\Delta x)^{2}+(\Delta y)^{2}}, \quad|\Delta y| \leq \sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \leq|\Delta x|+|\Delta y|
\end{gathered}
$$

Remark: In terms of the notation ' O ' ('Big O') and ' O ' ('Big o') in Section 7.4 (page 464), the above statement can be recast as:

$$
\begin{equation*}
o(1) \cdot \Delta x+o(1) \cdot \Delta y=o(1) \cdot \sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
o(\Delta x)+o(\Delta y)=o\left(\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}\right) \tag{4}
\end{equation*}
$$

where the small $o(\cdot)$'s refer to $2 D$ limit $\lim _{(\Delta x, \Delta y) \rightarrow(0,0)}$, same as $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}$.
The statements (3) or (4) are more concise and widely used.

