Homework 05

1. Section 10.7: $51,55,57,60$.
2. Section 10.7: Use the power series representation of $\frac{1}{1 \pm x}$ to find the power series representation of $\ln (1 \pm x)$ on $|x|<1$.
3. Section 10.7: Find the first three nonzero terms of the power series representation of

$$
\frac{1-x^{2}+x^{4}-\cdots}{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots}
$$

by "long division".
4. Section 10.8: Problems $5(n=3), 7(n=3), 15,23,29,35$.

Hint for problem 5:
Method 1: Find $f^{(n)}(a)$ by repeated differentiation.
Method 2: Write $\frac{1}{x}=\frac{1}{x-2+2}=\frac{1}{2} \frac{1}{\left(1+\frac{x-2}{2}\right)}$ and use the formula for geometric series to find the power series representation of $f(x)$. This will give you Taylor series generated by f at a (Theorem A, Lecture 09) and therefore Taylor polynomial generated by f at a.

Hint for problem 35:
Method 1: Find $f^{(n)}(a)$ by repeated differentiation.
Method 2 (easier): Use problem 2 above, Theorem 19 of section 10.7 and finally Theorem A, Lecture 09.
Update: also need to use a result from Section 10.9, Example 2: $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots$ valid for all $x \in \mathbb{R}$ (that is, radius of convergence $R>0$).

Theorem A (See page 10 of Lecture 09):
If $f(x)$ has a power series representation on $|x-a|<R$ with $\underline{R}>0$, then $T_{f, a}(x)=f(x)$.
In other words:
If $f(x)=\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$ on $|x-a|<R$ with $\underline{R>0}$, then $T_{f, a}(x)=\sum_{k=0}^{\infty} a_{k}(x-a)^{k}$.

