Calculus II, Spring 2023 (http://www.math.nthu.edu.tw/~ wangwc/)
Thomas' Calculus Early Transcendentals 13ed

Study guide for quiz 08

Quiz problems include both the lecture contents and homework problems.

1. Section $15.1,15.2$: Study how to identify the limits of integration in $\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y$ and $\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x$ for general domains (that is, not rectangles).
2. Section 15.2, 15.3: Study how to interchange between $\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y$ and $\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x$ for general domains as in problems 33 - 56 of section 15.2.
3. Section 15.4:

Study why $d A=r d r d \theta$ in polar coordinates. Practice how to determine the limits of integration in $\int_{\theta_{1}}^{\theta_{2}} \int_{f_{1}(\theta)}^{f_{2}(\theta)}(\cdots) r d r d \theta$ as in Examples 2-6 of section 15.4. More specifically:
(a) Given a domain R in the $x-y$ plane, practice drawing $\theta=C$ lines in R. The end points of these lines are lower limit (the near end point) and upper limit (the far end point) of the integration $r d r$. The end points for $d \theta$ are smallest and largest C among these $\theta=C$ lines.
(b) The end points of the lines $\theta=C$ must be expressed as $r=f_{1}(\theta)$ and $r=f_{2}(\theta)$. Given a simple curve $F(x, y)=0$ (such as a line or a circle), use the substitution $x=r \cos \theta, y=r \cos \theta$ to express it as $r=f(\theta)$. Examples: $x=1, y=-3$, $x+y=1, x^{2}+y^{2}=4$, etc.

