Brief solutions to Quiz 9

May 30, 2023:

1. (34 pts) Let D be the domain enclosed by $x=0, z=0, y=1$ and $x-y+z=0$ as shown in the figure. Express the volume of D in terms of $d x d y d z$ (in this order only). The answer is $\frac{1}{6}$. You can use it to check if you have the correct expression. Ans:

$$
V=\int_{z=0}^{1} \int_{y=z}^{1} \int_{x=0}^{y-z} d x d y d z
$$

2. (66 pts) Let D be the region bounded below by $z=0$, above by $x^{2}+y^{2}+z^{2}=4$ and the sides by $x^{2}+y^{2}=1$. Express the volume of D in terms of $d z d r d \theta$ and $d \rho d \phi d \theta$, respectively. The answer is $\left(\frac{8}{3}-\sqrt{3}\right) \cdot 2 \pi$. You can use it to check if you have the correct expressions.
Ans:

$$
\begin{gathered}
V=\int_{\theta=0}^{2 \pi} \int_{r=0}^{1} \int_{z=0}^{\sqrt{4-z^{2}}} d z r d r d \theta \\
=\int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\frac{\pi}{6}} \int_{\rho=0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta+\int_{\theta=0}^{2 \pi} \int_{\phi=\frac{\pi}{6}}^{\frac{\pi}{2}} \int_{\rho=0}^{\csc \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
=\int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\frac{\pi}{2}} \int_{\rho=0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta-\int_{\theta=0}^{2 \pi} \int_{\phi=\frac{\pi}{6}}^{\frac{\pi}{2}} \int_{\rho=\csc \phi}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta
\end{gathered}
$$

