Brief solutions to Quiz 6

Apr 25, 2023:

1. $(34 \mathrm{pts})($ Average $=19.87 \mathrm{pts})$

Let $F(x)=\int_{0}^{x^{2}} \cos \left(x^{2}-t^{2}\right) d t$. Evaluate $F^{\prime}(1)$. Give details.
Ans:

$$
\begin{gathered}
F^{\prime}(x)=\cos \left(x^{2}-\left(x^{2}\right)^{2}\right) \cdot 2 x+\int_{0}^{x^{2}}-\sin \left(x^{2}-t^{2}\right) \cdot 2 x d t \\
F^{\prime}(1)=2 \cos (0)+\int_{0}^{1}-2 \sin \left(1-t^{2}\right) d t=2-2 \int_{0}^{1} \sin \left(1-t^{2}\right) d t
\end{gathered}
$$

2. (33 pts) (Average $=\mathbf{2 4 . 0 3} \mathbf{~ p t s})$

Find the tangent line of $x^{2}+\tan ^{2}(y)=2$ at $(x, y)=\left(1, \frac{\pi}{4}\right)$.
Ans:
Let $f(x, y)=x^{2}+\tan ^{2}(y)$.

$$
\begin{gathered}
f_{x}(x, y)=2 x, \quad f_{x}(x, y)=2 \tan (y) \sec ^{2}(y) \\
f_{x}\left(1, \frac{\pi}{4}\right)=2, \quad f_{x}\left(1, \frac{\pi}{4}\right)=2 \tan \left(\frac{\pi}{4}\right) \sec ^{2}\left(\frac{\pi}{4}\right)=4
\end{gathered}
$$

tangent line:

$$
\nabla f\left(1, \frac{\pi}{4}\right) \cdot\left(x-1, y-\frac{\pi}{4}\right)=0, \quad 2(x-1)+4\left(y-\frac{\pi}{4}\right)=0 .
$$

3. $(33 \mathrm{pts})($ Average $=\mathbf{2 8 . 0 0} \mathbf{~ p t s})$

Let $f(x, y)=x^{2}-x y+2 y^{2}$. Find the direction \boldsymbol{u} (a unit vector) for which the directional derivative $\left(\frac{d f}{d s}\right)_{\boldsymbol{u},(1,1)}$ (that is, $\left.D_{\boldsymbol{u}} f(1,1)\right)$ is largest, and find this directional derivative.
Ans:

$$
\begin{gathered}
f_{x}(x, y)=2 x-y, \quad f_{x}(x, y)=-x+4 y, \\
f_{x}(1,1)=1, \quad f_{x}(1,1)=3, \\
\boldsymbol{u}=\frac{\nabla f(1,1)}{|\nabla f(1,1)|}=\frac{(1,3)}{\sqrt{10}} \\
D_{\boldsymbol{u}} f(1,1)=\nabla f(1,1) \cdot \boldsymbol{u}=\sqrt{10} .
\end{gathered}
$$

