Brief solutions to Quiz 5

Apr 18, 2023:

1. $(40 \mathrm{pts})($ Average $=27.42 \mathrm{pts})$

Give formal definition of $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L$. Does $f(x, y)=\frac{x y^{2}-1}{y-1}$ have a limit at $(1,1)$? Explain.
Ans:
Definition: See page 816 of the textbook.
No. See "Homework 06 solution" (Section 14.2, problem 49) from Week 07 of the course homepage.
2. $(40 \mathrm{pts})($ Average $=12.58+11.49 \mathrm{pts})$
(a) Give formal definition of ' $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ '.
(b) True or False? Explain:

If $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then it is continuous at $\left(x_{0}, y_{0}\right)$.
Ans:
(a): See page 832 of the textbook, or the link 'Remark on definition of differentiability of $f(x, y)$ " from Week 09 of the course homepage. Any one of the equivalent definitions will do.
(b): True. See page 832 of the textbook, or page 7 of Lecture 14 .
3. $(20 \mathrm{pts})($ Average $=16.94 \mathrm{pts})$

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(x, y, z)=(1,1,1)$ if $z(x, y)$ is implicitly defined by $x y+z^{3} x-2 y z=0$.
Ans:
$\frac{\partial z}{\partial x}(1,1,1)=-2, \frac{\partial z}{\partial y}(1,1,1)=1$. See "Homework 06 solution" (Section 14.3, problem 65) from Week 07 of the course homepage for details.

