Brief solutions to Quiz 2

Mar 07, 2023:
Average $=68$ pts.

1. $(20 \mathrm{pts}+20 \mathrm{pts})($ Average $=10.00 \mathrm{pts}+14.67 \mathrm{pts})$ Write down the statement of The Integral Test (need not prove it) and use it to derive the convergence/divergence of $\sum_{n=1}^{\infty} n^{-3}$. For this problem, you need to show detail computation of the corresponding improper integral (as a limit).

Ans:

The Integral Test: See textbook (Section 10.3, Theorem 9) or page 2 of Lecture 03.
Convergence/divergence of the p-series: See textbook (Section 10.3, Example 3) or Lecture 03.
2. (60 pts) (Average $=14.00 \mathrm{pts}+15.83 \mathrm{pts}+13.50 \mathrm{pts})$ Determine the convergence/divergence of
(a) : $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}$
(b) : $\sum_{n=1}^{\infty} n \sin \left(\frac{1}{n}\right)$
(c) : $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n^{2}}\right)$

For this problem, you may use the convergence/divergence of elementary series such as geometric series, p series without proving it again.
Ans:
(a): See homework 02 solution: Section 10.4, problem 29.
(b): See homework 02 solution: Section 10.3, problem 33.
(c): See homework 02 solution: Section 10.3, problem 16.

