Brief solutions to Quiz 1

Mar 02, 2023:
Average $=60.32$

1. (30 pts) Write down the definition of $\lim _{n \rightarrow \infty} a_{n}=\infty$ and use it prove $\lim _{n \rightarrow \infty}\left(n^{3}+1\right)=\infty$.

Ans:
Definition ($\mathbf{1 5} \mathbf{p t s}$): See page 589 of the textbook or page 6 of Lecture 01 note.
Proof ($\mathbf{1 5} \mathbf{~ p t s}$): For any $M \in \mathbb{R}$, take $N \in \mathbb{N}, N>(M-1)^{\frac{1}{3}}$.
Then for all $n>N$, we have

$$
a_{n}=n^{3}+1>N^{3}+1>M
$$

This proves that $\lim _{n \rightarrow \infty} n^{3}+1=\infty$.
2. $(20 \mathrm{pts})$ Evaluate $\lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{n}$. Give details.

Ans:
Answer $=e^{-2}$. See page 9-10 of Lecture 02 for details.
3. (20 pts) Find all $x \in \mathbb{R}$ such that $\sum_{n=0}^{\infty}(\ln x)^{n}$ converges and find the corresponding sum.

Ans:
See page 2 of Homework 01 solution.
Remark: By convention, $\sum_{n=0}^{\infty}(\ln x)^{n}$ exactly means $1+\sum_{n=1}^{\infty}(\ln x)^{n}$ as a function of x.
So you don't need to worry about 0^{0} when you try to evaluate it at $x=1$.
4. (30 pts) Write down the definition of $\sum_{n=1}^{\infty} a_{n}=L$ and use it to evaluate $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Ans:

Definition ($\mathbf{1 5} \mathbf{~ p t s}$): See page 599 of the textbook, or page 12 of Lecture 02 note.
Evaluation ($\mathbf{1 5} \mathbf{~ p t s}$): $\sum_{n=1}^{\infty} \frac{1}{n^{2}\left(n^{2}+1\right)}$ was a typo. My mistake. 15 pts free for everyone.
From the identity $a_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$, we have

$$
s_{k}=\sum_{n=1}^{k} a_{n}=1-\frac{1}{k+1} .
$$

Therefore

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{k \rightarrow \infty} s_{k}=1
$$

