Brief solutions to Midterm 1 (Average $=\mathbf{5 5 . 6 4} \mathbf{~ p t s})$

Mar 28, 2023.

1. $(8 \mathrm{pts})$ (Average $=\mathbf{5 . 0} \mathrm{pts})$

Evaluate $\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$.
Ans: $\frac{1}{6}$. See page 2 of Lecture 11.
2. (12 pts) (Average $=\mathbf{6 . 4 9} \mathbf{~ p t s})$

For what values of x does $\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{2}}$ converge?
Ans: $|x| \leq 1$.
From root test, $\rho=|x|$, therefore the series converges on $|x|<1$.
On $x=1$, the series converges by Integral Test.
On $x=-1$, the series converges since it converges absolutely from the case $x=1$ (or from Alternating Series Test).
3. $(12 \mathrm{pts})($ Average $=6.82 \mathrm{pts})$

Find $\sum_{n=1}^{\infty} n x^{n}$ and $\sum_{n=1}^{\infty} n^{2} x^{n}$ on $|x|<1$ using computational rules for power series (multiplication, differentiation, integration, etc.).
Ans:

$$
\begin{aligned}
& 1+x+x^{2}+\ldots=\frac{1}{1-x} \text { (geometric series) } \\
\Rightarrow & x+2 x^{2}+3 x^{3}+\ldots=x\left(\frac{1}{1-x}\right)^{\prime}=\frac{x}{(1-x)^{2}} \text { (Term by Term Differentiation) } \\
\Rightarrow \quad & x+2^{2} x^{2}+3^{2} x^{3}+\ldots=x\left(\frac{x}{(1-x)^{2}}\right)^{\prime}=\frac{x(1+x)}{(1-x)^{3}}
\end{aligned}
$$

4. $(12 \mathrm{pts})$ (Average $=\mathbf{5 . 1 9} \mathrm{pts})$

Give an approximation of $\int_{0}^{\frac{1}{2}} \cos \left(x^{2}\right) d x$ to within 10^{-5}. Give the formula of the approximation, but need not find the numerical value. Explain why the error is less than 10^{-5}.

Ans:

$$
\cos x^{2}=1-\frac{1}{2!}\left(x^{2}\right)^{2}+\frac{1}{4!}\left(x^{2}\right)^{4}-\frac{1}{6!}\left(x^{2}\right)^{6}+\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(x^{2}\right)^{2 k}}{(2 k)!}
$$

From the error estimate for alternating series:

$$
\begin{gathered}
\left|\cos x^{2}-\sum_{k=0}^{n}(-1)^{k} \frac{\left(x^{2}\right)^{2 k}}{(2 k)!}\right| \leq\left|\frac{\left(x^{2}\right)^{2 n+2}}{(2 n+2)!}\right| \\
\text { error }=\left|\int_{0}^{\frac{1}{2}} \cos x^{2} d x-\sum_{k=0}^{n} \int_{0}^{\frac{1}{2}}(-1)^{k} \frac{\left(x^{2}\right)^{2 k}}{(2 k)!} d x\right| \leq \int_{0}^{\frac{1}{2}} \frac{\left(x^{2}\right)^{2 n+2}}{(2 n+2)!} d x
\end{gathered}
$$

We want

$$
\int_{0}^{\frac{1}{2}} \frac{\left(x^{2}\right)^{2 n+2}}{(2 n+2)!} d x=\frac{1}{(4 n+5) 2^{4 n+5}(2 n+2)!}<10^{-5}
$$

Any $n \geq 1$ will do, since for $n=1,(4 n+5) 2^{4 n+5}(2 n+2)!=9 \cdot 2^{9} \cdot 4!>10^{6}$ Therefore the approximation is

$$
\sum_{k=0}^{1} \int_{0}^{\frac{1}{2}}(-1)^{k} \frac{\left(x^{2}\right)^{2 k}}{(2 k)!} d x=\sum_{k=0}^{1}(-1)^{k} \frac{1}{(4 k+1) \cdot 2^{4 k+1} \cdot(2 k)!}=\frac{1}{2}-\frac{1}{320}
$$

5. $(6+12 \mathrm{pts})($ Average $=5.93+4.53 \mathrm{pts})$
(a) Show that the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} \cdot n!}$ converges absolutely.
(b) Find the sum of the series in (a). Prove your answer (i.e., why the equality holds).

Ans:
(a) Ratio test:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{2^{n+1}(n+1)!}}{\frac{1}{2^{n} n!}}=0<1, \quad \text { the series converges absolutely. } \tag{6pts}
\end{equation*}
$$

(b) Sum $=e^{-1 / 2}$. (4 pts) Since

$$
\begin{gathered}
1-\frac{1}{2 \cdot 1!}+\frac{1}{4 \cdot 2!}-\cdots+(-1)^{n} \frac{1}{2^{n} \cdot n!}+\cdots=T_{e^{x}, 0}\left(x=-\frac{1}{2}\right) \\
T_{e^{x}, 0}\left(-\frac{1}{2}\right)=e^{-\frac{1}{2}} \text { if and only if } \lim _{n \rightarrow \infty} R_{n}\left(-\frac{1}{2}\right)=0, \\
\left|R_{n}\left(-\frac{1}{2}\right)\right| \leq \frac{e^{c_{n+1}}}{(n+1)!} \frac{1}{2^{n+1}} \leq \frac{1}{(n+1)!} \frac{1}{2^{n+1}} \text { since } c_{n+1} \in\left(-\frac{1}{2}, 0\right) .
\end{gathered}
$$

It follows that $\lim _{n \rightarrow \infty} R_{n}\left(-\frac{1}{2}\right)=0$. Therefore $T_{e^{x}, 0}\left(-\frac{1}{2}\right)=e^{-\frac{1}{2}} .(8 \mathrm{pts})$
6. $(6+6+6 \mathrm{pts}, 6+9+9 \mathrm{pts}$ with extra points) $($ Average $=\mathbf{3 . 8 0}+\mathbf{7 . 2 3}+\mathbf{2 . 5 2} \mathbf{~ p t s})$

True or False? Prove it if true, give a counter example if false.
(a) If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ on $|x-a|<R, R>0$, then $T_{f, a}(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$.
(b) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(c) If $g(x)=f(0)+\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ on $|x|<1$, then $f(x)=g(x)$ on $|x|<1$.

Ans: (3 pts for correct True or correct False. $\mathbf{3}$ pts for correct explanation.)
(a) True. From Term by Term Differentiation Theorem, we get

$$
f^{(n)}(a)=n!c_{n} .
$$

Therefore

$$
T_{f, a}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

(b) True. Denote by $L=\sum_{n=1}^{\infty} a_{n}$ and $S_{n}=\sum_{k=1}^{n} a_{k}$. Since $a_{n}=S_{n}-S_{n-1}$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(S_{n}-S_{n-1}\right)=\lim _{n \rightarrow \infty} S_{n}-\lim _{n \rightarrow \infty} S_{n-1}=L-L=0
$$

(c) False. Take $f(x)=e^{-1 / x^{2}}$ for $x \neq 0$, and $f(x)=0$ for $x=0$. Then $f^{(n)}(0)=0$, $\forall n \geq 0$. Therefore $f(0)+\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=0 \neq f(x)$, if $x \neq 0$.

7. $(8 \mathrm{pts})$ (Average $=4.40 \mathrm{pts})$

Use any method to find $T_{\tan , 0}(x)$ upto x^{5} term.
Ans: Since

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots, \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots,
$$

Since $\cos 0 \neq 0, \tan x=\frac{\sin x}{\cos x}$ can also be represented by a power series on $|x-0|<\delta$. This series can be computed using undetermined coefficient or long division to get

$$
\tan x=\frac{x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\cdots}{1-\frac{1}{2} x^{2}+\frac{1}{6} x^{4}-\cdots}=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\cdots,
$$

This power series also equals $T_{\tan , 0}(x)$ from problem $6(\mathrm{a})$.
Direct evaluation using derivatives of $\tan x$ at $x=0$ also gets full credit as long as the results are correct.

8. (12 pts) (Average $=\mathbf{5 . 0 6} \mathbf{~ p t s}$)

Use any method to find $T_{\sin ^{-1}, 0}(x)$. Then find the radius of convergence of this series. Hint: Binomial series.

Ans:

$$
\begin{gathered}
\sin ^{-1} x=\int_{0}^{x}\left(1-t^{2}\right)^{\frac{-1}{2}} d t \\
=\int_{0}^{x}\left(1-\frac{1}{2}\left(-t^{2}\right)+\frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}\left(-t^{2}\right)^{2}+\cdots+(-1)^{n} \frac{\frac{1}{2} \cdot \frac{3}{2} \cdots \frac{2 n-1}{2}}{n!}\left(-t^{2}\right)^{n}+\cdots\right) d t \\
=x+\frac{\frac{1}{2}}{1!} \frac{x^{3}}{3}+\frac{\frac{1}{2} \cdot \frac{3}{2}}{2!} \frac{x^{5}}{5}+\frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}}{3!} \frac{x^{7}}{7}+\cdots+\frac{\frac{1}{2} \cdot \frac{3}{2} \cdots \frac{2 n-1}{2}}{n!} \frac{x^{2 n+1}}{2 n+1}+\cdots
\end{gathered}
$$

Radius of convergence $=1$ by Ratio Test.

