## Brief solutions to selected problems in homework 13

1. Section 16.3: Solutions, common mistakes and corrections:

$$
\begin{aligned}
& \text { Sec } 16.3 \\
& \text { 21. } \int_{(1,1,1)}^{(2,2)} \frac{1}{y} d x+\left(\frac{1}{z}-\frac{x}{y_{2}}\right) d y+\left(-\frac{y}{z}\right) d z \\
& \text { Find } f \text { satisfy } \nabla f=\left(\frac{1}{y}, \frac{1}{z}-\frac{x}{y^{2}},-\frac{y}{z^{2}}\right) \\
& f_{x}=\frac{1}{y} \Rightarrow f=\frac{x}{y}+g(y, z)^{-\infty} \text { for some } g: R^{2} \rightarrow R \\
& f_{y}=\frac{1}{z}-\frac{x}{y^{2}} \text {, by } 0 f_{y}=-\frac{x}{y^{2}}+g_{y} \Rightarrow g_{y}=\frac{1}{z} \Rightarrow g=\frac{y}{z}+h(z)-\theta \\
& f_{z}=-\frac{y}{z^{2}}, \text { by } 0 \text { (e) } f_{z}=0+\left(-\frac{y}{z^{2}}\right)+h^{\prime}(z) \Rightarrow h^{\prime}(z)=0 \Rightarrow h(z)=C \text {. } \\
& \text { for some constant } C \\
& \begin{array}{l}
\Rightarrow f=\frac{x}{y}+\frac{y}{z}+c \text {. take } f=\frac{x}{y}+\frac{y}{z} . \\
\int_{(1,1,1)}^{(2,2,2)} \frac{1}{y} d x+\left(\frac{1}{z}-\frac{x}{y^{2}}\right) d y+\left(-\frac{y}{z^{2}}\right) d z=\frac{x}{y}+\left.\frac{y}{z}\right|_{(1,1,1)} ^{(2,2,2)}=0 .
\end{array}
\end{aligned}
$$

Figure 1: Section 16.3, problem 21

$$
\begin{aligned}
& \text { D6. find } f \text { st. } \nabla f=\left(\frac{x}{\sqrt{x^{2}+y^{2} z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \cdot \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\
& \text { take } f=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

Figure 2: Section 16.3, problem 26
2. Problem 2:

$$
\begin{aligned}
& F=\frac{x}{\sqrt{x^{2}+y^{2}}} i+\frac{y}{\sqrt{x^{2}+y^{2}}} j+0 k \\
& G=\frac{-y}{x^{2}+y^{2}} i+\frac{x}{x^{2}+y^{2}} j+0 k
\end{aligned}
$$

$$
\text { a } M_{1}=\frac{x}{\sqrt{x^{2}+y^{2}}}, N_{1}=\frac{y}{\sqrt{x^{2}+y^{2}}}, p_{1}=0
$$

$$
\frac{\partial P_{1}}{\partial y}=0=\frac{\partial N_{1}}{\partial z}, \frac{\partial P_{1}}{\partial x}=0=\frac{\partial M_{1}}{\partial z}, \frac{\partial M_{1}}{\partial y}=-\frac{x y}{\left(x^{2}+y^{2}\right)^{\frac{z}{2}}}=\frac{\partial N_{1}}{\partial x}
$$

$\Rightarrow$ F satisfies the component test

$$
\begin{aligned}
& M_{2}=\frac{-y}{x^{2}+y^{2}}, N_{2}=\frac{x}{x^{2}+y^{2}}, P_{2}=0 \\
& \frac{\partial P_{2}}{\partial y}=0=\frac{\partial N_{2}}{\partial z}, \frac{\partial P_{2}}{\partial x}=0=\frac{\partial M_{2}}{\partial z}, \frac{\partial M_{2}}{\partial y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial N_{2}}{\partial x}
\end{aligned}
$$

$\Rightarrow G$ satisfies the component test

Figure 3: homework 13, problem 2(a)

$$
\begin{aligned}
& b \nabla f=F \\
& \frac{\partial f}{\partial x}=M_{1}, \frac{\partial f}{\partial y}=N_{1}, \frac{\partial f}{\partial z}=p_{1} \\
& f(x, y, z)=\sqrt{x^{2}+y^{2}}+g(y, z) \\
& \frac{y}{\sqrt{x^{2}+y^{2}}}+\frac{\partial g}{\partial y}=\frac{y}{\sqrt{x^{2}+y^{2}}} \Rightarrow \frac{\partial g}{\partial y}=0 \\
& \Rightarrow f(x, y, z)=\sqrt{x^{2}+y^{2}}+h(z) \\
& \\
& \Rightarrow+\frac{\partial h}{\partial z}=0 \Rightarrow \frac{\partial h}{\partial z}=0, h(z)=z+c \\
& \Rightarrow f(x, y, z)=\sqrt{x^{2}+y^{2}}+\frac{\partial}{\partial z}+0
\end{aligned}
$$

Figure 4: homework 13, problem 2(b)

$$
\begin{aligned}
& C r(t)=(\cos t) i+(\sin t) j, 0 \leq t \leq 2 \pi \\
& G
\end{aligned} \begin{aligned}
& G \frac{-y}{x^{2}+y^{2}} i+\frac{x}{x^{2}+y^{2}} j \\
&=\frac{-\sin t}{\sin ^{2} t+\cos ^{2} t} i+\frac{\cos t}{\sin ^{2} t+\cos ^{2} t} j \\
&=(-\sin t) i+(\cos t) j \\
& \frac{d r}{d t}=(-\sin t) i+(\cos t) j \\
&=\int_{0}^{2 \pi}\left(\sin ^{2} t+\cos ^{2} t\right) d t \\
&=2 \pi \neq 0 \\
& \because G \cdot d r \oint_{C} G \cdot \frac{d r}{d t} d t \\
& \because G \cdot d r \neq 0
\end{aligned} \quad \begin{aligned}
& \therefore \text { isn't conservative by } 7 \mathrm{hm} 3 .
\end{aligned}
$$

Figure 5: homework 13, problem 2(c)

Problem 2(d): It is easier to explain the idea if we restrict problem 2 in the plane:
Let $\boldsymbol{F}=\frac{x}{\sqrt{x^{2}+y^{2}}} \boldsymbol{i}+\frac{y}{\sqrt{x^{2}+y^{2}}} \boldsymbol{j}$ and $\boldsymbol{G}=\frac{-y}{x^{2}+y^{2}} \boldsymbol{i}+\frac{x}{x^{2}+y^{2}} \boldsymbol{j}$.
(a) Show that both $\boldsymbol{F}$ and $\boldsymbol{G}$ satisfy the component test.
(b) The natural domain of both $\boldsymbol{F}$ and $\boldsymbol{G}$ is $\left\{(x, y), x^{2}+y^{2} \neq 0\right\}$ (that is where $\boldsymbol{F}$ and $\boldsymbol{G}$ are defined). Show that $\boldsymbol{F}$ is conservative in this domain by finding its potential function.
(c) Show that $\boldsymbol{G}$ is NOT conservative in this domain (see Example 5 on p990).
(d) If given another $\boldsymbol{H}$ satisfying the component test in this domain, how do you determine whether $\boldsymbol{H}$ is conservative?

Ans: It is clear that answers to (a), (b), (c) remain unchanged.
For (d): Suppose $\boldsymbol{H}$ satisfies the component test in $\left\{(x, y), x^{2}+y^{2} \neq 0\right\}$. Let $C$ be any simple closed curve, and $\mathcal{R}$ be the inside of $C$.
(a) If $(0,0) \notin \mathcal{R}$.

In this case, $\mathcal{R}$ is simply connected. We can apply the 2 D version of 'Component Test for Conservative Field" statement on page 988, to conclude that ( $\boldsymbol{H}$ is conservative, and therefore)

$$
\begin{equation*}
\oint_{C} \boldsymbol{H} \cdot \boldsymbol{T} d s=0 \tag{1}
\end{equation*}
$$

(b) If $(0,0) \in \mathcal{R}$.

As explained in Lecture 28, page 12, we have

$$
\begin{equation*}
\oint_{C} \boldsymbol{H} \cdot \boldsymbol{T} d s=\oint_{C_{a}} \boldsymbol{H} \cdot \boldsymbol{T} d s \tag{2}
\end{equation*}
$$

where $C_{a}=\left\{(x, y), x^{2}+y^{2}=a^{2}\right\}$. Moreover, it is clear that the line integral in (2) is independent of $a>0$.

We conclude from the above analysis that,
(a) If $\oint_{C_{a}} \boldsymbol{H} \cdot \boldsymbol{T} d s \neq 0$, then from Theorem 3 (loop property), $\boldsymbol{H}$ is not conservative.
(b) If $\oint_{C_{a}} \boldsymbol{H} \cdot \boldsymbol{T} d s=0$, then we conclude from (1), (2) that

$$
\begin{equation*}
\oint_{C} \boldsymbol{H} \cdot \boldsymbol{T} d s=0 \tag{3}
\end{equation*}
$$

for every simple closed curve $C$.
If $C$ is closed but not simple (i.e. $C$ intersects itself), we can always decompose $C$ into several simple closed curves (break up at the intersection points and reconnect), it follows that (3) remains valid even if $C$ is not simple closed.

In summary, we have the following conclusion:
$\boldsymbol{H}$ is conservative $\Longleftrightarrow \oint_{C} \boldsymbol{H} \cdot \boldsymbol{T} d s=0$ for any closed curve $C \Longleftrightarrow \oint_{C_{a}} \boldsymbol{H} \cdot \boldsymbol{T} d s=0$

The conclusion (4) remains valid in 3D. The argument is similar, with the following replacement of key words:
2D: If $C$ is simple closed and $(0,0) \notin \Omega$. (3D: If $C$ does not circle around the $z$-axis).
2D: If $C$ is simple closed and $(0,0) \in \Omega$. (3D: If $C$ circles around the $z$-axis once).
2D: $C_{a}=\left\{(x, y), x^{2}+y^{2}=a^{2}\right\}$. (3D: $\left.C_{a}=\left\{(x, y, z=0), x^{2}+y^{2}=a^{2}\right\}\right)$.
2D: If $C$ is not simple closed. (3D: If $C$ circles around the $z$-axis more than once).
3. Problem 3:
2. Let $\vec{F}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}(x, y, z)$.
(a) What is the natural domain $D_{F}$ of $\vec{F}$ ?
(b) Show that $\vec{F}$ satisfies component test in $D_{F}$.
(c) Is $D_{F}$ simply connected ?
(d) Is $\vec{F}$ conservative in this domain ?
(a) $D_{F}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}>0\right\}=\mathbb{R}^{3} \backslash\{(0,0,0)\}$
(b) $\frac{\partial}{\partial y}\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)=-x y\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}=\frac{\partial}{\partial x}\left(\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$
$\frac{\partial}{\partial z}\left(\frac{x}{\sqrt{x^{3} y^{2}+z^{2}}}\right)=-x z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}=\frac{\partial}{\partial x}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$
$\frac{\partial}{\partial z}\left(\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)=-y z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}=\frac{\partial}{\partial y}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$
$\therefore \vec{F}$ satisfies component test in $D_{F}$
(c)
$D_{F}$ is simply connected
(d) By $(b), \vec{F}$ satisfies component test in $D_{F}$.

Also. DF is simply connected.
$\therefore \vec{F}$ is conservative in $D_{F}$

Method 2: By observation (or whatever methods), we know that $\boldsymbol{F}=\nabla \sqrt{x^{2}+y^{2}+z^{2}}$, therefore $\boldsymbol{F}$ is conservative.
4. Section 16.4: Solutions, common mistakes and corrections:


Figure 6: Section 16.4, problem 10


Figure 7: Section 16.4, problem 38
5. Problem 5:

$$
\begin{aligned}
& \text { 4. } F=(M(x, y), 0) \text { on } R \\
& \text { Tangential form: } \\
& \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \\
& =\int_{0}^{a} \int_{0}^{f(x)}-\frac{\partial \mu}{\partial y} d y d x \\
& =\int_{0}^{a}(-\mu(x \cdot f(x))+\mu(x \cdot 0)) d x \\
& =-\int_{0}^{a} \mu(x \cdot f(x)) d x+\int_{0}^{a} \mu(x, 0) d x \\
& \oint_{c} \mu d x-N d y \\
& =\oint_{c_{1}} \mu d x+\oint_{c_{2}} \mu d x+\oint_{c_{3}} \mu d x \\
& =\int_{0}^{a} \mu(t, 0) d t+\int_{0}^{a} \mu(a-t, f(a-t))(-d t) \quad \text { let } \begin{array}{r}
x=a-t \\
d x=-d t
\end{array} \\
& =\int_{0}^{a} \mu(t, 0) d t+\int_{a}^{0} \mu(x-f(x)) d x \\
& =\int_{0}^{a} \mu(x \cdot 0) d x-\int_{0}^{a} \mu(x \cdot f(x)) d x \\
& \therefore \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{c} \mu d x+N d y
\end{aligned}
$$

Figure 8: homework 13, problem 5, tangential form

$$
\begin{aligned}
& \text { Normal form: } \\
& \iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y \\
& =\int_{0}^{b} \int_{0}^{g(y)} \frac{\partial M}{\partial x} d x d y \\
& =\int_{0}^{b}(\mu(g(y), y)-M(0, y)) d y \\
& =\int_{0}^{b} \mu(g(y), y) d y-\int_{0}^{b} \mu(0 . y) d y \\
& \text { (0.b) } \\
& C_{1}=\left\{\begin{array}{l}
x=t \quad 0 \leq t \leq a \\
y=0
\end{array}\right. \\
& C_{2}:\left\{\begin{array}{l}
x=g(t) \\
y=t
\end{array} \quad 0 \leqslant t \leqslant b\right. \\
& c_{3}=\left\{\begin{array}{l}
x=0 \\
y=b-t
\end{array} \quad 0 \leqslant t \leq b\right. \\
& \oint_{C} \mu d y-N d x \\
& =\oint_{c_{1}} \mu \overrightarrow{d y}_{y}^{0}+\oint_{c_{2}} \mu d y+\oint_{c_{3}} \mu d y \\
& =\int_{0}^{b} \mu(g(t), t) d t+\int_{0}^{b} \mu(0 . b-t)(-d t) \quad \text { let } y=b-t \\
& =\int_{0}^{b} \mu(g(t) . t) d t+\int_{b}^{0} \mu(0 . y) d y \\
& =\int_{0}^{b} \mu(g(y) \cdot y) d t-\int_{0}^{b} \mu(0 . y) d y \\
& \therefore \iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y=\oint_{c} M d y-N d x
\end{aligned}
$$

Figure 9: homework 13, problem 5, normal form

