Calculus II, Spring 2022 (Thomas' Calculus Early Transcendentals 13ed), http://www.math.nthu.edu.tw/~ wangwc/

Brief solutions to selected problems in homework 03

1. Section 10.6: Solutions, common mistakes and corrections:

Figure 1: Section 10.6, problem 11

Figure 2: Section 10.6, problem 25. Method 2: Use Limit Comparison Test to compare $\left|a_{n}\right|$ with $\frac{1}{n}$

Figure 3: Section 10.6, problem 28

Figure 4: Section 10.6, problem 29. Remark: $\int_{x=1}^{\infty} \frac{\tan ^{-1} x}{1+x^{2}} d x=\int_{y=\frac{\pi}{4}}^{\frac{\pi}{2}} y d y$

Figure 5: Section 10.6, problem 30
$L \mid=\sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+1}-\sqrt{n})$

$$
\begin{aligned}
& \sqrt{n+1}-\sqrt{n} \times \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}} \\
& \text { and }\left(\frac{1}{\sqrt{n+1}+\sqrt{n}}\right) \text { is a desrocising soginence of }
\end{aligned}
$$

$$
\text { with } \frac{1}{\sqrt{n}} \Rightarrow \text { a divergent p-sevies }
$$

$$
\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{\sqrt{n+1}+\sqrt{n}}{\frac{1}{\sqrt{n}}}\right)}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=
$$

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n}}+1}=\frac{1}{2}
$$

$$
\Rightarrow \text { Cenurigre (andition?llu }
$$

Figure 6: Section 10.6, problem 41

Figure 7: Section 10.6, problem 49

Figure 8: Section 10.6, problem 53. Note: the last few lines should read " $\left|S_{n}-S\right|<\left|a_{n+1}\right|<$ 0.001 " instead.
2. Section 10.7: Solutions, common mistakes and corrections:

Figure 9: Section 10.7, problem 11

Figure 10: Section 10.7, problem 15

Figure 11: Section 10.7, problem 23

Figure 12: Section 10.7, problem 29

$$
47 G_{n}=\left(\frac{x^{2}+1}{3}, n\right.
$$

$$
<\Rightarrow x^{2}<2,-\sqrt{2}<x<\sqrt{3}
$$

When

$$
\text { when } x= \pm \sqrt{2}, A_{n}-\left(\frac{2+1}{3}\right)^{n}=1
$$

$$
\rightarrow \lim _{h \rightarrow 0} \ln _{n \rightarrow}=
$$

when $-\sqrt{2}: x<\sqrt{2}, \sum_{n=0}^{\infty}$ (tm co mu.
$\sin m-\frac{1}{\frac{x^{2}+1}{3}}=\frac{2}{x^{2}+1} \quad n=0$
$=\sum_{n=\infty}^{\infty}\left(\frac{x^{2}+1}{3}\right)^{x}=\frac{1-\frac{x^{2}+1}{2}}{\left\lvert\,-\frac{1-2}{2}\right.}=$

Figure 13: Section 10.7, problem 47

