Calculus II, Spring 2023 (Thomas’ Calculus Early Transcendentals 13ed), http://www.math.nthu.edu.tw/~ wangwc/

Brief solutions to selected problems in homework 02 (part 2)
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, p> 1.

Answer:
case I: p>1,¢ <0.
Take p = 1.5, ¢ = —2.3 for example. Since Inn > 1 for n > 3, we have
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Therefore Z— converges by the Comparison Test.

The same argument works for any p > 1, ¢ < 0. Just replace 1.5 by p and —2.3 by g¢.
case II: p > 1, ¢ > 0.
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Take p = 3.2, ¢ = 4.6 for example. Let a,, = %
A
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Since a,, > —15 forn > 3, comparing ;an with ;W (convergent) leads to no conclusion.
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We need to compare a,, with b, = — by choosing an r so that 1 < r < p. Therefore we
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take r = Tp = 2.1, b, = —7, and apply the Limit Comparison Test:
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Instead of applying L’Hopital’s Rule to lim ——— (Inn)? = lim ﬂ directly, we notice that
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The limit lim lnn

— is easier to compute. By L’Hopital’s Rule:
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Since b, converges, we know from the Comparison Test that a, also converges.
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Again, the same argument works for any p > 1, ¢>0and 1 <r < p.
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2. Section 10.4, problem 62: Z ,0<p<1.
n=2

Answer: The proof for problem 62 is similar:

case III: 0 <p<1,¢>0.
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Compare it with E —
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Since E — =00 for 0 < p < 1, we know by the Comparison Test that E diverges.
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case IV:0<p<1,¢<0.
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Compare it with —, p<r<1 (take r = ZX for example). The rest of the calculation
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is similar to case II and leads to the conclusion that Z -
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diverges.



