Calculus II, Spring 2023 (Thomas' Calculus Early Transcendentals 13ed), http://www.math.nthu.edu.tw/~wangwc/

Brief solutions to selected problems in homework 02 (part 2)

1. Section 10.4, problem 61:
$$\sum_{n=2}^{\infty} \frac{(\ln n)^q}{n^p}, p > 1$$

Answer:

case I: $p > 1, q \leq 0$.

Take p = 1.5, q = -2.3 for example. Since $\ln n > 1$ for $n \ge 3$, we have

$$\sum_{n=3}^{\infty} \frac{(\ln n)^q}{n^p} = \sum_{n=3}^{\infty} \frac{1}{(\ln n)^{2.3} n^{1.5}} < \sum_{n=3}^{\infty} \frac{1}{n^{1.5}} < \infty$$

Therefore $\sum_{n=2}^{\infty} \frac{(\ln n)^{-2.3}}{n^{1.5}}$ converges by the Comparison Test.

The same argument works for any p > 1, $q \le 0$. Just replace 1.5 by p and -2.3 by q. case II: p > 1, q > 0.

Take p = 3.2, q = 4.6 for example. Let $a_n = \frac{(\ln n)^{3.2}}{n^{4.6}}$. Since $a_n > \frac{1}{n^{4.6}}$ for $n \ge 3$, comparing $\sum_{n=2}^{\infty} a_n$ with $\sum_{n=2}^{\infty} \frac{1}{n^{4.6}}$ (convergent) leads to no conclusion.

We need to compare a_n with $b_n = \frac{1}{n^r}$ by choosing an r so that 1 < r < p. Therefore we take $r = \frac{1+p}{2} = 2.1$, $b_n = \frac{1}{n^{2.1}}$, and apply the Limit Comparison Test:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(\ln n)^q}{n^{p-r}} = \lim_{n \to \infty} \frac{(\ln n)^{4.6}}{n^{3.2-2.1}}$$

Instead of applying L'Hôpital's Rule to $\lim_{n\to\infty} \frac{(\ln n)^q}{n^{p-r}} = \lim_{n\to\infty} \frac{(\ln n)^{4.6}}{n^{3.2-2.1}}$ directly, we notice that

$$\lim_{n \to \infty} \frac{(\ln n)^q}{n^{p-r}} = \lim_{n \to \infty} \left(\frac{\ln n}{n^{\frac{p-r}{q}}}\right)^q = \left(\lim_{n \to \infty} \frac{\ln n}{n^{\frac{p-r}{q}}}\right)^q = \left(\lim_{n \to \infty} \frac{\ln n}{n^{\frac{3.2-2.1}{4.6}}}\right)^{4.6}$$

The limit $\lim_{n\to\infty} \frac{\ln n}{n^{\frac{p-r}{q}}}$ is easier to compute. By L'Hôpital's Rule:

$$\lim_{n \to \infty} \frac{\ln n}{n^{\frac{p-r}{q}}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\left(\frac{p-r}{q}\right)n^{\frac{p-r}{q}-1}} = \lim_{n \to \infty} \frac{1}{\left(\frac{p-r}{q}\right)n^{\frac{p-r}{q}}} = \lim_{n \to \infty} \frac{1}{\left(\frac{3.2-2.1}{4.6}\right)n^{\frac{3.2-2.1}{4.6}}} = 0$$

Therefore

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \left(\lim_{n \to \infty} \frac{\ln n}{n^{\frac{p-r}{q}}}\right)^q = 0$$

Since $\sum_{n=2}^{\infty} b_n$ converges, we know from the Comparison Test that $\sum_{n=2}^{\infty} a_n$ also converges. Again, the same argument works for any p > 1, q > 0 and 1 < r < p. 2. Section 10.4, problem 62: $\sum_{n=2}^{\infty} \frac{(\ln n)^q}{n^p}$, 0 .

Answer: The proof for problem 62 is similar:

case III: 0 . $Compare it with <math>\sum_{n=3}^{\infty} \frac{1}{n^p}$: $\sum_{n=3}^{\infty} \frac{(\ln n)^q}{n^p} > \sum_{n=3}^{\infty} \frac{1}{n^p}$

Since $\sum_{n=3}^{\infty} \frac{1}{n^p} = \infty$ for $0 , we know by the Comparison Test that <math>\sum_{n=2}^{\infty} \frac{(\ln n)^q}{n^p}$ diverges. case IV: 0 , <math>q < 0.

Compare it with $\sum_{n=3}^{\infty} \frac{1}{n^r}$, p < r < 1 (take $r = \frac{p+1}{2}$ for example). The rest of the calculation

is similar to case II and leads to the conclusion that $\sum_{n=2}^{\infty} \frac{(\ln n)^q}{n^p}$ diverges.