Homework 13

1. Section 16.3: Problems 1, 3, 5, 9, 21, 26, 29.
2. Section 16.3:

Let $\boldsymbol{F}=\frac{x}{\sqrt{x^{2}+y^{2}}} \boldsymbol{i}+\frac{y}{\sqrt{x^{2}+y^{2}}} \boldsymbol{j}+0 \boldsymbol{k}$ and $\boldsymbol{G}=\frac{-y}{x^{2}+y^{2}} \boldsymbol{i}+\frac{x}{x^{2}+y^{2}} \boldsymbol{j}+0 \boldsymbol{k}$.
(a) Show that both \boldsymbol{F} and \boldsymbol{G} satisfy the component test.
(b) The natural domain of both \boldsymbol{F} and \boldsymbol{G} is $\left\{(x, y, z), x^{2}+y^{2} \neq 0\right\}$ (that is where \boldsymbol{F} and \boldsymbol{G} are defined). Show that \boldsymbol{F} is conservative in this domain by finding its potential function.
(c) Show that \boldsymbol{G} is NOT conservative in this domain (see Example 5 on p990).
(d) If given another \boldsymbol{H} satisfying the component test in this domain, how do you determine whether \boldsymbol{H} is conservative?
3. Section 16.3:

Let $\boldsymbol{F}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \boldsymbol{i}+\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \boldsymbol{j}+\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \boldsymbol{k}$. What is the natural domain of \boldsymbol{F} ? Show that \boldsymbol{F} satisfies the component test in this domain. Is this domain simply connected? Is \boldsymbol{F} conservative in this domain?
4. Section 16.4: Problems 10, 17, 19, 23, 27, 38, 39.

Hints:
In problem 17, a polar curve $r=f(\theta)$ can be parameterized by $x(\theta)=f(\theta) \cos \theta$, $y(\theta)=f(\theta) \sin \theta$.
Problem 19 can be computed easier using Green's Theorem.
On a circle $x^{2}+y^{2}=a^{2}$, it is a useful tip to remember that $\boldsymbol{n}=\frac{(x, y)}{a}, d s=a d \theta$ and $\boldsymbol{n} d s=(x, y) d \theta$.
5. Section 16.4: Verify Green's Theorem in tangential form and normal form for the vector field $\boldsymbol{F}=(M(x, y), 0)$ on R, where M and its partial derivatives are all continuous in R, the region illustrated in class. That is, R is bounded by $x=0, y=0$ and the curve $y=f(x), 0 \leq x \leq a$ with $f(0)=b$ and $f(a)=0$, which at the same time can be described as $x=g(y), 0 \leq y \leq b$ with $g(0)=a$ and $g(b)=0$. In the computation of the line integrals on the three portions of ∂R, pay attention to finding suitable parametrizations with correct orientation.

