Homework 08

1. Section 14.6: Problems 5, 9, 17, 19, 25(b), 55, 57, 58.

Remark: Suppose that $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$. Both "linearization" and "linear approximation" of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ refer to the tangent plane of the surface $z=f(x, y)$ at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. That is, the plane $z=L(x, y)$ given on page 1 of Lecture 14.

Problem 55 provides another way of finding the tangent plane $z=L(x, y)$. That is, apply the definition and equation (1) on page 853 to the function $F(x, y, z)=$ $z-f(x, y)$:

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

Verify that this will lead to the equation $z=L(x, y)$.
2. Section 14.6: Problems 33, 39(a), 45.

Remark: The formula for "error of linear approximation" will be explained in Lecture 17. See also page 853 and page 859 (item 1 and 2) for generalization to functions of 3 variables.
3. Section 14.7: Problems 1, 19, 39, 43, 49, 51.

Hint for problem 49, 51: Minimizing/maximizing distance is the same as minimizing/maximizing (distance) ${ }^{2}$. The latter is easier to compute.

