Homework 04

1. Section 10.7: $51,55,57,60$.
2. Section 10.7: Use the power series representation of $\frac{1}{1-x}$ to find the power series representation of $\ln (1-x)$ on $|x|<1$.
3. Section 10.7: Assuming the power series representation of

$$
\frac{1-x^{2}+x^{4}-\cdots}{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots}
$$

exists. Find the first three nonzero terms of this power series using the method in Lecture 07, page 3 (undetermined coefficients) or page 4 (long division).
4. Section 10.8: Problems $5(n=3), 7(n=3), 15,23,29,35$.

Hint for problem 5:
Method 1: Find $f^{(n)}(a)$ by repeated differentiation.
Method 2: Write $x=x-2+2=2\left(1+\frac{x-2}{2}\right)$ and use the formula for geometric series.
5. Section 10.8: Let

$$
f(x)= \begin{cases}0, & x=0 \\ e^{-1 / x^{2}}, & x \neq 0\end{cases}
$$

It is known that $f^{(n)}(0)=0$ for all n. Verify this for $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ (go through the details).
Hint:
Step 1: Compute $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0$ (see page 12 of Lecture 08).
Step 2: Compute $f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f\left(^{\prime} 0\right)}{x-0}$. Since we already computed $f^{\prime}(0)=0$ from step 1 , all we need is to compute $f^{\prime}(x)$ for $x \neq 0$ to find this limit.
If $x \neq 0$, then we can compute directly $f^{\prime}(x)=\frac{d}{d x} e^{-1 / x^{2}}=\cdots$. Evaluation of the limit in step 2 is similar to the process in step 1 (use the trick given on page 12 of Lecture 08).

