Brief solutions to Quiz 9

Dec 26, 2023:

1. (30 pts) Use any method to find the surface area of the torus (donut) generated by revolving the circle $(x-3)^{2}+y^{2}=1$ around the y axis.
Ans:
See page 4-5 of Lecture 23 and page 2 of Homework 13 Solutions.
2. (30 pts) Solve for $y(x)$ from $\frac{d y}{d x}=x \sqrt{1-y^{2}}$ with $y(0)=\frac{1}{2}$.

Ans:

$$
\begin{gathered}
\frac{d y}{\sqrt{1-y^{2}}}=x d x \Longrightarrow \int_{s=\frac{1}{2}}^{y} \frac{d s}{\sqrt{1-s^{2}}}=\int_{t=0}^{x} t d t \\
\left.\Longrightarrow \sin ^{-1}(s)\right|_{s=\frac{1}{2}} ^{y}=\left.\frac{t^{2}}{2}\right|_{t=0} ^{x} \Longrightarrow \sin ^{-1}(y)=\frac{x^{2}}{2}+\frac{\pi}{6} \Longrightarrow y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)
\end{gathered}
$$

Remark:

The solution $\sin ^{-1}(y)=\frac{x^{2}}{2}+\frac{\pi}{6}$ or $y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)$ is only valid on $|x| \leq \sqrt{2-\frac{\pi}{3}}$ since $\left|\sin ^{-1}(y)\right| \leq 1$ by definition. The full solution is

$$
y(x)=\left\{\begin{array}{rlrl}
-1, & & x & \leq-\sqrt{2-\frac{\pi}{3}} \\
\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right), & & |x| & \leq \sqrt{2-\frac{\pi}{3}} \\
1, & & x \geq \sqrt{2-\frac{\pi}{3}}
\end{array}\right.
$$

3. (40 pts) Solve for $y(x)$ from $x y^{\prime}-y=x \ln x$ on $x>0$ with $y(1)=2$.

Ans:

$$
y^{\prime}-\frac{y}{x}=\ln x
$$

Multiply by the integration factor $e^{\int \frac{-1}{x}}=\frac{1}{x}$,

$$
\begin{gathered}
\Longrightarrow \frac{y^{\prime}}{x}-\frac{y}{x^{2}}=\frac{\ln x}{x} \Longrightarrow\left(\frac{y}{x}\right)^{\prime}=\frac{\ln x}{x} \\
\Longrightarrow \int_{1}^{x}\left(\frac{y(t)}{t}\right)^{\prime} d t=\int_{1}^{x} \frac{\ln t}{t} d t=\int_{1}^{x} \ln t d(\ln t)=\int_{t=1}^{x} d\left(\frac{\ln ^{2} t}{2}\right) \\
\Longrightarrow \frac{y(x)}{x}-\frac{y(1)}{1}=\frac{\ln ^{2} x}{2}-0 \Longrightarrow y(x)=2 x+\frac{x \ln ^{2} x}{2}
\end{gathered}
$$

