Brief solutions to Quiz 7

Nov 28, 2023:

1. (30 pts) Find the point on $y=x^{\frac{3}{2}}, x \geq 0$ that is closest to $(4,0)$. Explain why the answer you have is actually a global minimum on $\{x \geq 0\}$.
Ans:
Let $d=$ "distance from (x, y) to $(4,0)$ ". Minimizing d is the same as minimizing d^{2}.
Let $f(x)=d^{2}$ on $\left\{y=x^{\frac{3}{2}}\right\}$, then

$$
\begin{gathered}
f(x)=d^{2}=(x-4)^{2}+y^{2}=(x-4)^{2}+x^{3}=x^{3}+x^{2}-8 x+16 . \\
f^{\prime}(x)=3 x^{2}+2 x-8=(x+2)(3 x-4)
\end{gathered}
$$

Therefore, $f^{\prime}(x) \geq 0$ on $\left\{x \geq \frac{4}{3}\right\}$ and $f^{\prime}(x) \leq 0$ on $\left\{0 \leq x \leq \frac{4}{3}\right\}$.
That is, f is decreasing on $\left\{0 \leq x \leq \frac{4}{3}\right\}$ and increasing on on $\left\{x \geq \frac{4}{3}\right\}$.
Thus the global minimum occurs at $x=\frac{4}{3}$ and the minimum is $\sqrt{f\left(\frac{4}{3}\right)}=\frac{16}{3 \sqrt{3}}$.
2. (30 pts) Solve for $y(x)$ on $x>0$ from $y^{\prime \prime}(x)=\frac{1}{x^{2}}, y^{\prime}(1)=2, y(1)=0$.

Ans:

$$
\begin{aligned}
& y^{\prime}(x)=y^{\prime}(1)+\int_{1}^{x} y^{\prime \prime}(t) d t=y^{\prime}(1)+\int_{1}^{x} t^{-2} d t=2+\left.\left(-t^{-1}\right)\right|_{1} ^{x}=-\frac{1}{x}+3 \\
& y(x)=y(1)+\int_{1}^{x} y^{\prime}(t) d t=y(1)+\int_{1}^{x}\left(-\frac{1}{t}+3\right) d t=0+\left.(-\ln |t|+3 t)\right|_{1} ^{x}=-\ln x+3 x-3
\end{aligned}
$$

3. (30 pts) Express $\int_{0}^{2} x^{2} d x$ as a limit of Riemann sum (with uniformly spaced partition, and c_{k} of your choice) and find the limit. (Hint: first write down the uniform partition on [0, 2])
Ans:
$P=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=2\right\} . x_{k}=\frac{2 k}{n} . \Delta x_{k}=\frac{2}{n}$.

$$
\int_{0}^{2} x^{2} d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{2 k}{n}\right)^{2} \frac{2}{n}=\lim _{n \rightarrow \infty} \frac{8}{n^{3}} \sum_{k=1}^{n} k^{2}=\lim _{n \rightarrow \infty} \frac{8}{n^{3}} \frac{n(n+1)(2 n+1)}{6}=\frac{8}{3}
$$

