Brief solutions to Quiz 5

Nov 14, 2023:

1. (30 pts) Let

$$
f(x)=\left\{\begin{aligned}
x^{2} \sin \left(\frac{1}{x^{2}}\right), & x \neq 0 \\
0, & x=0
\end{aligned}\right.
$$

Is f differentiable at $x=0$? Is f twice differentiable at $x=0$? Start with definitions of $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ and explain.

Ans:

$$
\begin{gathered}
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x^{2}}\right)-0}{x-0}=0 \quad \text { (Sandwich Theorem) } \\
f^{\prime}(x)=2 x \sin \left(\frac{1}{x^{2}}\right)-\frac{2}{x} \cos \left(\frac{1}{x^{2}}\right), \quad x \neq 0 \\
\lim _{x \rightarrow 0} f^{\prime}(x) \quad \text { does not exist }
\end{gathered}
$$

So, f^{\prime} is not continuous at $x=0$, therefore not differentiable at $x=0$ and

$$
f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0} \quad \text { does not exist }
$$

2. $(20+20$ pts $)$ State both Rolle's Theorem and The Mean Value Theorem. Then prove that Rolle's Theorem implies The Mean Value Theorem.

Ans:
See page 245-247 of the textbook.
3. (30 pts) Find all critical points of $f(x)=x^{\frac{1}{3}}(x-4)$. For each one of them, use first derivative test to determine whether it corresponds to a local minimum, a local maximum or neither.
Ans:
See page 255 of the textbook.

