Brief solutions to Quiz 4

Nov 07, 2023:

1. (40 pts) Evaluate the derivative of $(\sin x)^{\tan x}+x^{\log _{2}(x)}$, where $0<x<\frac{\pi}{2}$.

Ans:
Start with
$(\sin x)^{\tan x}+x^{\log _{2}(x)}=\left(e^{\ln (\sin x)}\right)^{\tan x}+\left(e^{\ln x}\right)^{\log _{2} x}=e^{\tan x \ln (\sin x)}+e^{\ln x \log _{2} x}=e^{\tan x \ln (\sin x)}+e^{\frac{\ln ^{2} x}{\ln 2}}$
and proceed with The Chain Rule:

$$
\left(e^{f(x)}+e^{g(x)}\right)^{\prime}=e^{f(x)} f^{\prime}(x)+e^{g(x)} g^{\prime}(x)
$$

A common mistake:

$$
\ln (F(x)+G(x))=\ln F(x)+\ln G(x), \quad \text { Wrong! }
$$

2. (42 pts) Write down domains and ranges of all six inverse trigonometric functions and their derivatives (need not derive them).
Ans:
Domains and ranges: See page 62 and page 201 of the textbook.
Derivatives: See page 205 of the textbook.
See also Lecture 10 note for all the answers.
3. (18 pts) Use the linear approximation formula for $(1+x)^{k}$ near $x=0$ to get an approximate value of $\frac{1}{\sqrt{3.99}}$.
Ans:

$$
\frac{1}{\sqrt{0.99}}=(4-0.01)^{\frac{-1}{4}}=\left(4\left(1-\frac{0.01}{2}\right)^{\frac{-1}{2}}\right) \approx \frac{1}{2}\left(1-\frac{0.01}{4}\left(\frac{-1}{2}\right)\right)=0.500625
$$

