Calculus I, Fall 2023

Brief solutions to Quiz 3

Oct 17, 2023:

1. (20 pts)

Suppose f is a continuous function on \mathbb{R} and f(1) < 0. Show that there exists a $\delta > 0$ such that f(x) < 0 on $(1 - \delta, 1 + \delta)$.

Ans:

Take $\varepsilon = \frac{-f(1)}{2} > 0$. From continuity of f at 1, there exists a $\delta > 0$ such that $f(x) - f(1) < \frac{-f(1)}{2}$, that is $f(x) < f(1) - \frac{f(1)}{2} = \frac{f(1)}{2} < 0$, on $(1 - \delta, 1 + \delta)$.

- 2. (20+20 pts)
 - (a) State the Intermediate Value Theorem.
 - (b) Use it to show that $x = \cos x$ has at least a solution (take it for granted that both y = x and $y = \cos x$ are continuous functions).

Ans:

(a) See Theorem 11 of the textbook for the statement.

(b) The function $f(x) = x - \cos(x)$ is continuous and satisfies f(0) < 0 < f(1), therefore there exists a $c \in (0, 1)$ such that f(c) = 0, that is, $c = \cos(c)$.

Figure 1: A common mistake to problem 2. See Lecture 04, page 8 for correct interpretation of "f takes any value between f(a) and f(b).

- 3. (20+20 pts)
 - (a) State precise definition of $\lim_{x\to 0^+} f(x) = \infty$.
 - (b) Use it to prove that $\lim_{x\to 0^+} \frac{1}{x^2} = \infty$.

Ans:

(a): For any B > 0, there exists a corresponding $\delta > 0$ such that $0 < x < \delta$ implies f(x) > B. (See also p131 of the textbook)

(b): Take $\delta = 1/\sqrt{B}$. Then $0 < x < \delta$ implies $f(x) = \frac{1}{x^2} > \frac{1}{\delta^2} = B$.

Figure 2: A common mistake to problem 3