## Brief solutions to Quiz 3

Oct 17, 2023:

1. (20 pts)

Suppose $f$ is a continuous function on $\mathbb{R}$ and $f(1)<0$. Show that there exists a $\delta>0$ such that $f(x)<0$ on $(1-\delta, 1+\delta)$.

Ans:
Take $\varepsilon=\frac{-f(1)}{2}>0$. From continuity of $f$ at 1 , there exists a $\delta>0$ such that $f(x)-f(1)<\frac{-f(1)}{2}$, that is $f(x)<f(1)-\frac{f(1)}{2}=\frac{f(1)}{2}<0$, on $(1-\delta, 1+\delta)$.
2. $(20+20 \mathrm{pts})$
(a) State the Intermediate Value Theorem.
(b) Use it to show that $x=\cos x$ has at least a solution (take it for granted that both $y=x$ and $y=\cos x$ are continuous functions).

Ans:
(a) See Theorem 11 of the textbook for the statement.
(b) The function $f(x)=x-\cos (x)$ is continuous and satisfies $f(0)<0<f(1)$, therefore there exists a $c \in(0,1)$ such that $f(c)=0$, that is, $c=\cos (c)$.


Figure 1: A common mistake to problem 2. See Lecture 04, page 8 for correct interpretation of " $f$ takes any value between $f(a)$ and $f(b)$.
3. $(20+20 \mathrm{pts})$
(a) State precise definition of $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
(b) Use it to prove that $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty$.

Ans:
(a): For any $B>0$, there exists a corresponding $\delta>0$ such that $0<x<\delta$ implies $f(x)>B$. (See also p131 of the textbook)
(b): Take $\delta=1 / \sqrt{B}$. Then $0<x<\delta$ implies $f(x)=\frac{1}{x^{2}}>\frac{1}{\delta^{2}}=B$.

$$
\begin{aligned}
& \text { 3* } \lim _{x \rightarrow 0^{+}} f(x)=\infty \\
& \lim _{x \rightarrow 0^{+}} f(\delta)=\infty \\
& \text { (*) }|f(x)-\infty|<\varepsilon \text {. } \\
& |f(s)-\infty|<\varepsilon \\
& \left|x-0^{2}\right|<\delta \text {. } \\
& \rightarrow \lim _{x \rightarrow 0^{+}} f(y)=\infty \\
& x \rightarrow 0^{+} \rightarrow x>0 \text {. } \\
& \rightarrow x<\delta \text {. } \\
& \text { We use " } \mathrm{f}(\mathrm{x})>\mathrm{B}^{\prime \prime} \text {, not (*), to describe that }
\end{aligned}
$$

Figure 2: A common mistake to problem 3

