Calculus I, Fall 2023

Brief solutions to Quiz 2

Sep 26, 2023:

1. (15+20 pts) Give precise definition of $\lim_{x\to c} f(x) = L$ and use it to prove that $\lim_{x\to 2} \frac{1}{x} = \frac{1}{2}$ Ans:

See the textbook for definition.

For any $\varepsilon > 0$ (we will modify it to $0 < \varepsilon < \frac{1}{2}$ shortly), we have

$$\begin{aligned} \left|\frac{1}{x} - \frac{1}{2}\right| &< \varepsilon \\ \Leftrightarrow & -\varepsilon < \frac{1}{x} - \frac{1}{2} < \varepsilon \\ \Leftrightarrow & -\varepsilon + \frac{1}{2} < \frac{1}{x} < \varepsilon + \frac{1}{2} \quad (\text{here we need } -\varepsilon + \frac{1}{2} > 0, \text{ or } \varepsilon < \frac{1}{2}, \text{ for next "} \iff ") \\ \Leftrightarrow & \frac{1}{\varepsilon + \frac{1}{2}} < x < \frac{1}{-\varepsilon + \frac{1}{2}} \\ \Leftrightarrow & \frac{1}{\varepsilon + \frac{1}{2}} - 2 < x - 2 < \frac{1}{-\varepsilon + \frac{1}{2}} - 2 \end{aligned}$$

It is easy to see that if $0 < \varepsilon < \frac{1}{2}$, then $\frac{1}{\varepsilon + \frac{1}{2}} - 2 < 0$ and $\frac{1}{-\varepsilon + \frac{1}{2}} - 2 > 0$. It suffices to take

$$\delta = \min\left\{2 - \frac{1}{\varepsilon + \frac{1}{2}}, \ \frac{1}{-\varepsilon + \frac{1}{2}} - 2\right\} > 0.$$
(1)

Then

$$\frac{1}{\varepsilon + \frac{1}{2}} - 2 < x - 2 < \frac{1}{-\varepsilon + \frac{1}{2}} - 2$$
$$\longleftrightarrow \quad -\delta < x - 2 < \delta$$
$$\longleftrightarrow \quad 0 < |x - 2| < \delta$$

Thus we have found $\delta > 0$ for every $0 < \varepsilon < \frac{1}{2}$ from (1). The *delta* found for ε with $0 < \varepsilon < \frac{1}{2}$ can be used for any $\varepsilon \ge \frac{1}{2}$. The proof is completed.

+10.
prove that
$$\lim_{X\to 2} \frac{1}{X} = \frac{1}{2}$$
, for every ε , there exists a corresponding ε to $|X-2| < \varepsilon \rightarrow |X-\frac{1}{X} - \frac{1}{2}| < \varepsilon$. $|\frac{2-x}{2x}| < \varepsilon$. $|(x-2)(\frac{1}{2x})| < \varepsilon$. $|X-\frac{1}{2}| < \varepsilon$.

Figure 1: A common mistake to problem 1

2. (15+20 pts) Give precise definition of $\lim_{x\to c^+} f(x) = L$ and use it to prove that: If $\lim_{x\to c^+} f(x) = L$ and $\lim_{x\to c^+} g(x) = M$, then $\lim_{x\to c^+} (3f(x) - 4g(x)) = 3L - 4M$. Ans:

See the textbook for definition.

For any $\varepsilon > 0$, there exist corresponding $\delta_1 > 0$ and $\delta_1 > 0$, such that

$$0 < x - c < \delta_1 \implies |f(x) - L| < \frac{\varepsilon}{7}$$

and

$$0 < x - c < \delta_2 \implies |g(x) - M| < \frac{\varepsilon}{7}.$$

Take $\delta = \min \{\delta_1, \delta_2\}$, then

$$\begin{array}{ll} 0 < x - c < \delta \\ |f(x) - L| < \frac{\varepsilon}{7} \\ |g(x) - M| < \frac{\varepsilon}{7} \\ |g(x) - M| < \frac{\varepsilon}{7} \\ \Rightarrow & |3f(x) - 3L| < \frac{3\varepsilon}{7} \\ |4g(x) - 4M| < \frac{4\varepsilon}{7} \\ \Rightarrow & \frac{-3\varepsilon}{7} < 3f(x) - 3L < \frac{3\varepsilon}{7} \\ \Rightarrow & \frac{-4\varepsilon}{7} < 4g(x) - 4M < \frac{4\varepsilon}{7} \\ \Rightarrow & \frac{-3\varepsilon}{7} - \frac{4\varepsilon}{7} < (3f(x) - 3L) - (4f(x) - 4L) < \frac{4\varepsilon}{7} - \frac{-3\varepsilon}{7} \\ \Rightarrow & -\varepsilon < (3f(x) - 4g(x)) - (3L - 4M) < \varepsilon \\ \Rightarrow & |(3f(x) - 4g(x)) - (3L - 4M)| < \varepsilon \end{array}$$

This proves $\lim_{x \to c^+} (3f(x) - 4g(x)) = 3L - 4M.$

CXXX C-4	
+ 15. 0 <x <="" c-52.<="" th=""><th></th></x>	
VERO, 20, 1 Colored LE	
35,20 sit. if oxin-c/231, then Ising-L/27	
38270, s.t. if octx-c/<82, then 9(2)-M/<7	
S=minf8, Szpost ifa= x-c < S, then	
set	

Figure 2: A common mistake to problem 1

3. (30 pts) Evaluate $\lim_{\theta \to 0} \frac{\sin(1 - \cos \theta)}{\theta^2}$. You can use what you know about $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$ without proof.

Ans:

Since
$$1 - \cos \theta = 2 \sin^2 \frac{\theta}{2}$$
, we have

$$\lim_{\theta \to 0} \frac{\sin(1 - \cos \theta)}{\theta^2} = \lim_{\theta \to 0} \left(\left(\frac{\sin\left(2\sin^2 \frac{\theta}{2}\right)}{2\sin^2 \frac{\theta}{2}} \right) \left(\frac{2\sin^2 \frac{\theta}{2}}{2\left(\frac{\theta}{2}\right)^2} \right) \left(\frac{2\left(\frac{\theta}{2}\right)^2}{\theta^2} \right) \right)$$

$$= \lim_{\theta \to 0} \left(\frac{\sin\left(2\sin^2 \frac{\theta}{2}\right)}{2\sin^2 \frac{\theta}{2}} \right) \cdot \lim_{\theta \to 0} \left(\frac{2\sin^2 \frac{\theta}{2}}{2\left(\frac{\theta}{2}\right)^2} \right) \cdot \lim_{\theta \to 0} \left(\frac{2\left(\frac{\theta}{2}\right)^2}{\theta^2} \right) = 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2}$$

Here we have used the fact $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ (Theorem 7).