Brief solutions to Quiz 2

Sep 26, 2023:

1. $(15+20 \mathrm{pts})$ Give precise definition of $\lim _{x \rightarrow c} f(x)=L$ and use it to prove that $\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{2}$

Ans:
See the textbook for definition.
For any $\varepsilon>0$ (we will modify it to $0<\varepsilon<\frac{1}{2}$ shortly), we have

$$
\begin{array}{ll}
& \left|\frac{1}{x}-\frac{1}{2}\right|<\varepsilon \\
\Longleftrightarrow & -\varepsilon<\frac{1}{x}-\frac{1}{2}<\varepsilon \\
\Longleftrightarrow & -\varepsilon+\frac{1}{2}<\frac{1}{x}<\varepsilon+\frac{1}{2} \quad \text { (here we need }-\varepsilon+\frac{1}{2}>0, \text { or } \varepsilon<\frac{1}{2}, \text { for next " } \Longleftrightarrow " \text {) } \\
\Longleftrightarrow & \frac{1}{\varepsilon+\frac{1}{2}}<x<\frac{1}{-\varepsilon+\frac{1}{2}} \\
\Longleftrightarrow & \frac{1}{\varepsilon+\frac{1}{2}}-2<x-2<\frac{1}{-\varepsilon+\frac{1}{2}}-2
\end{array}
$$

It is easy to see that if $0<\varepsilon<\frac{1}{2}$, then $\frac{1}{\varepsilon+\frac{1}{2}}-2<0$ and $\frac{1}{-\varepsilon+\frac{1}{2}}-2>0$. It suffices to take

$$
\begin{equation*}
\delta=\min \left\{2-\frac{1}{\varepsilon+\frac{1}{2}}, \frac{1}{-\varepsilon+\frac{1}{2}}-2\right\}>0 \tag{1}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \frac{1}{\varepsilon+\frac{1}{2}}-2<x-2<\frac{1}{-\varepsilon+\frac{1}{2}}-2 \\
\Longleftarrow & -\delta<x-2<\delta \\
\Longleftarrow & 0<|x-2|<\delta
\end{aligned}
$$

Thus we have found $\delta>0$ for every $0<\varepsilon<\frac{1}{2}$ from (1). The delta found for ε with $0<\varepsilon<\frac{1}{2}$ can be used for any $\varepsilon \geq \frac{1}{2}$. The proof is completed.

Figure 1: A common mistake to problem 1
2. $(15+20 \mathrm{pts})$ Give precise definition of $\lim _{x \rightarrow c^{+}} f(x)=L$ and use it to prove that: If $\lim _{x \rightarrow c^{+}} f(x)=L$ and $\lim _{x \rightarrow c^{+}} g(x)=M$, then $\lim _{x \rightarrow c^{+}}(3 f(x)-4 g(x))=3 L-4 M$.

Ans:

See the textbook for definition.
For any $\varepsilon>0$, there exist corresponding $\delta_{1}>0$ and $\delta_{1}>0$, such that

$$
0<x-c<\delta_{1} \Longrightarrow|f(x)-L|<\frac{\varepsilon}{7}
$$

and

$$
0<x-c<\delta_{2} \Longrightarrow|g(x)-M|<\frac{\varepsilon}{7}
$$

Take $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, then

$$
\begin{array}{ll}
& 0<x-c<\delta \\
& |f(x)-L|<\frac{\varepsilon}{7} \\
\Longrightarrow \quad & |g(x)-M|<\frac{\varepsilon}{7} \\
& |3 f(x)-3 L|<\frac{3 \varepsilon}{7} \\
\Longrightarrow \quad & |4 g(x)-4 M|<\frac{4 \varepsilon}{7} \\
& \frac{-3 \varepsilon}{7}<3 f(x)-3 L<\frac{3 \varepsilon}{7} \\
\Longrightarrow \quad & \frac{-4 \varepsilon}{7}<4 g(x)-4 M<\frac{4 \varepsilon}{7} \\
& \frac{-3 \varepsilon}{7}-\frac{4 \varepsilon}{7}<(3 f(x)-3 L)-(4 f(x)-4 L)<\frac{4 \varepsilon}{7}-\frac{-3 \varepsilon}{7} \\
\Longrightarrow \quad & -\varepsilon<(3 f(x)-4 g(x))-(3 L-4 M)<\varepsilon \\
\Longrightarrow & |(3 f(x)-4 g(x))-(3 L-4 M)|<\varepsilon
\end{array}
$$

This proves $\lim _{x \rightarrow c^{+}}(3 f(x)-4 g(x))=3 L-4 M$.

Figure 2: A common mistake to problem 1
3. (30 pts) Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin (1-\cos \theta)}{\theta^{2}}$. You can use what you know about $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}$ without proof.
Ans:
Since $1-\cos \theta=2 \sin ^{2} \frac{\theta}{2}$, we have

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\sin (1-\cos \theta)}{\theta^{2}}=\lim _{\theta \rightarrow 0}\left(\left(\frac{\sin \left(2 \sin ^{2} \frac{\theta}{2}\right)}{2 \sin ^{2} \frac{\theta}{2}}\right)\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2\left(\frac{\theta}{2}\right)^{2}}\right)\left(\frac{2\left(\frac{\theta}{2}\right)^{2}}{\theta^{2}}\right)\right) \\
& =\lim _{\sin \theta \rightarrow 0}\left(\frac{\sin \left(2 \sin ^{2} \frac{\theta}{2}\right)}{2 \sin ^{2} \frac{\theta}{2}}\right) \cdot \lim _{\theta \rightarrow 0}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2\left(\frac{\theta}{2}\right)^{2}}\right) \cdot \lim _{\theta \rightarrow 0}\left(\frac{2\left(\frac{\theta}{2}\right)^{2}}{\theta^{2}}\right)=1 \cdot 1 \cdot \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Here we have used the fact $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ (Theorem 7).

