Calculus I, Fall 2023
Brief solutions to Quiz 2

Sep 26, 2023:
1
1. (15420 pts) Give precise definition of lim f(x) = L and use it to prove that lin% ~=5
T—cC T2 L
Ans:

See the textbook for definition.
1
For any ¢ > 0 (we will modify it to 0 < e < 5 shortly), we have
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It is easy to see that if 0 < e < =, then T+ —2<0and T — 2> 0. It suffices
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Thus we have found § > 0 for every 0 < ¢ < 3 from (1). The delta found for £ with
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0 < e < = can be used for any € > 3 The proof is completed.

Figure 1: A common mistake to problem 1



2. (15420 pts) Give precise definition of lim f(x) = L and use it to prove that:
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If l1m f(z) = L and l1m g(x) = M, then hm (3f(z) — 4g(z)) = 3L — 4M.
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Ans:

See the textbook for definition.

For any € > 0, there exist corresponding §; > 0 and §; > 0, such that
O<z—c<d = |f(x)— L] <§

and -
O<z—c<d = |g(w)—M!<?.

Take 6 = min {01, >}, then
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This proves hm (3f(z) —4g(z)) = 3L — 4M.

Figure 2: A common mistake to problem 1



in(1 — cos in 6
M. You can use what you know about lim % with-

3. (30 pts) Evaluate élir(l) 7 lim

out proof.
Ans:

0
Since 1 — cos§ = 2sin? g We have

sin (2 sin® Q) 2 sin? Q
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sin (2 sin? Q) 2 sin? Q 2(2)2
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sin 0

Here we have used the fact lim
6—0

= 1 (Theorem 7).



