Brief solutions to Midterm 02 (63.69/112)

Dec 05, 2023. Show all details to get potential partial credits. 14 pts each problem, total 112 pts

1. $(5.94 / 14)$ Let g be the inverse function of f, with f and g both twice differentiable (i.e.

$$
f(1)=2, \quad f(2)=3, \quad f(3)=4
$$

both first and second derivative exist). Suppose $f^{\prime}(1)=5, \quad f^{\prime}(2)=6, \quad f^{\prime}(3)=7$.
$f^{\prime \prime}(1)=8, \quad f^{\prime \prime}(2)=9, \quad f^{\prime \prime}(3)=10$
Find $g(2), g^{\prime}(2)$ and $g^{\prime \prime}(2)$.

Ans:

$$
\begin{gathered}
f(1)=2 \Longrightarrow g(2)=1 \\
g(f(x))=x \Longrightarrow g^{\prime}(f(x)) \cdot f^{\prime}(x)=1 \Longrightarrow g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \Longrightarrow g^{\prime}(2)=\frac{1}{f^{\prime}(1)}=\frac{1}{5} \\
\frac{d}{d x}\left(\left(g^{\prime}(f(x)) \cdot f^{\prime}(x)=1\right) \Longrightarrow g^{\prime \prime}(f(x)) \cdot\left(f^{\prime}(x)\right)^{2}+g^{\prime}(f(x)) \cdot f^{\prime \prime}(x)=0\right. \\
\Longrightarrow g^{\prime \prime}(f(x))=\frac{-g^{\prime}(f(x)) \cdot f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=\frac{-f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{3}} \Longrightarrow g^{\prime \prime}(2)=\frac{-f^{\prime \prime}(1)}{\left(f^{\prime}(1)\right)^{3}}=\frac{-8}{125}
\end{gathered}
$$

2. (11.19/14) Evaluate the derivative of $\left(\sin ^{-1} x\right)^{x}+x^{\tan x}$, where $0<x<1$.

Ans:

$$
\begin{gathered}
\qquad f(x)^{g(x)}=\left(e^{\ln f(x)}\right)^{g(x)}=e^{g(x) \ln f(x)} \\
\Longrightarrow \frac{d}{d x} f(x)^{g(x)}=\frac{d}{d x}(g(x) \ln f(x)) e^{g(x) \ln f(x)}=\left(g^{\prime}(x) \ln f(x)+\frac{f^{\prime}(x)}{f(x)} g(x)\right) f(x)^{g(x)} \\
\text { Answer }=\left(\ln \sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}} \sin ^{-1} x}\right)\left(\sin ^{-1} x\right)^{x}+\left(\left(\sec ^{2} x\right) \ln x+\frac{\tan x}{x}\right) x^{\tan x}
\end{gathered}
$$

3. (10.25/14) Let $f(x)=\left\{\begin{aligned} e^{\left(\frac{-1}{x^{2}}\right)}, & x \neq 0 \\ 0, & x=0\end{aligned}\right.$. Is f differentiable at $x=0$? Is f twice differentiable at $x=0$?
Ans:
Yes. Yes.
$f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{e^{x^{-2}}}$ (apply L'Hôpital's Rule for $\frac{ \pm \infty}{\infty}$ once) $=\lim _{x \rightarrow 0} \frac{-x^{-2}}{-2 x^{-3} e^{x^{-2}}}=$ $\lim _{x \rightarrow 0} \frac{x}{2 e^{x^{-2}}}=0$.
$f^{\prime}(x)=\frac{2}{x^{3}} e^{\left(\frac{-1}{x^{2}}\right)}$ for $x \neq 0$.

$$
\begin{aligned}
& f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{2}{x^{4}}}{e^{\frac{1}{x^{2}}}}=\lim _{x \rightarrow 0} \frac{2 x^{-4}}{e^{x^{-2}}} \text { (apply L'Hôpital's Rule for } \frac{ \pm \infty}{\infty} \text { twice) }= \\
& \lim _{x \rightarrow 0} \frac{-8 x^{-5}}{-2 x^{-3} e^{x^{-2}}}=\lim _{x \rightarrow 0} \frac{4 x^{-2}}{e^{x^{-2}}}=\lim _{x \rightarrow 0} \frac{-8 x^{-3}}{-2 x^{-3} e^{x^{-2}}}=\lim _{x \rightarrow 0} \frac{4}{e^{x^{-2}}}=0
\end{aligned}
$$

4. $(9.84 / 14)$ Let $f(x)$ be defined for all $x \in \mathbb{R}$ and $L(x)=m(x-a)+f(a)$ for some constants m and a.
True or false?

$$
\text { If } f(x)=L(x)+\varepsilon \cdot(x-a) \text { with } \lim _{x \rightarrow a} \varepsilon=0 \text {, then } f \text { is differentiable at } a \text {. }
$$

Ans:
True.

$$
\begin{gathered}
0=\lim _{x \rightarrow a} \varepsilon=\lim _{x \rightarrow a} \frac{f(x)-L(x)}{x-a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)-m(x-a)}{x-a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}-m \\
\Longrightarrow \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=m \Longrightarrow f^{\prime}(a)=m
\end{gathered}
$$

5. $(9.65 / 11)$ Find the limits of the following expressions:

$$
\begin{array}{ll}
\text { (a) } \lim _{x \rightarrow 0^{+}}(1-2 x)^{\frac{1}{x}} & \text { (b) } \lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{\tan x}
\end{array}
$$

(a) Ans:

$$
\left.=\lim _{x \rightarrow 0^{+}}\left(e^{\ln (1-2 x)}\right)^{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} e^{\frac{\ln (1-2 x)}{x}}=e^{\left(\lim _{x \rightarrow 0^{+}} \frac{\ln (1-2 x)}{x}\right)}=e^{\left(\lim _{x \rightarrow 0^{+}} \frac{-2}{1-2 x}\right.}\right)=e^{-2}
$$

(b) Ans:

$$
=\lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{\tan x}=\lim _{x \rightarrow 0} \frac{x}{\sin x}(\cos x)\left(x \sin \frac{1}{x}\right)=\left(\lim _{x \rightarrow 0} \frac{x}{\sin x}\right)\left(\lim _{x \rightarrow 0} \cos x\right)\left(\lim _{x \rightarrow 0} x \sin \frac{1}{x}\right)=0
$$

6. (4.12/14) Let $y(x)$ be the solution of $y^{\prime}(x)=e^{-x^{2}}+1, y(0)=-1$. Show that $y(x)=0$ has exactly one solution.

Ans:

First, we show that $y(2)>0$. Otherwise, if $y(2) \leq 0$, then by Mean Value Theorem, there exists a $c \in(0,2)$ such that $y^{\prime}(c)=\frac{y(2)-y(0)}{2-0} \leq \frac{0-(-1)}{2-0}=\frac{1}{2}$, a contradiction since $y^{\prime}(x)=e^{-x^{2}}+1>1$.
Secondly, since $y(0)<0, y(2)>0$, by Intermediate Value Theorem, there exists a $c_{1} \in(0,2)$ such that $y\left(c_{1}\right)=0$.
Finally, we show that $y(x)=0$ has only one solution. Suppose not, we will have $c_{1} \neq c_{2}$ such that $y\left(c_{1}\right)=y\left(c_{2}\right)=0$. From Rolle's Theorem, there exists an $\alpha \in\left(c_{1}, c_{2}\right)$ such that $y^{\prime}(\alpha)=0$, a contradiction since $y^{\prime}(x)=e^{-x^{2}}+1>1$.
7. (6.53/14) Evaluate

$$
\lim _{n \rightarrow \infty} \sum_{k=n+1}^{2 n} \frac{\ln k-\ln n}{k}
$$

Ans:

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \sum_{k=n+1}^{2 n} \frac{\ln \frac{k}{n}}{\frac{k}{n} n}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=n+1}^{2 n} \frac{\ln \frac{k}{n}}{\frac{k}{n}}=\int_{1}^{2} \frac{\ln x}{x} d x \\
& =\int_{1}^{2} \ln x d \ln |x|=\int_{1}^{2} \ln x d \ln x=\left.\frac{(\ln x)^{2}}{2}\right|_{1} ^{2}=\frac{(\ln 2)^{2}}{2}
\end{aligned}
$$

8. (6.16/14) Suppose $f(x)$ satisfies $\int_{0}^{x^{3}} 2^{-t} f(t) d t=\cos x+C$ for some constant C and all $x \in \mathbb{R}$. Find C and $f(2)$.
Ans:
Evaluate at $x=0$ on both sides:

$$
0=\int_{0}^{0} 2^{-t} f(t) d t=\cos 0+C \Longrightarrow C=-1
$$

Take the derivative on both sides:

$$
\Longrightarrow\left(2^{-x^{3}} f\left(x^{3}\right)\right) \cdot 3 x^{2}=-\sin x
$$

Evaluate at $x=2^{\frac{1}{3}}$ on both sides:

$$
\Longrightarrow\left(2^{-2} f(2)\right) \cdot 3 \cdot 2^{\frac{2}{3}}=-\sin \left(2^{\frac{1}{3}}\right) \Longrightarrow f(2)=-\frac{4 \sin \left(2^{\frac{1}{3}}\right)}{3 \cdot 2^{\frac{2}{3}}}
$$

