Brief solutions to selected problems in homework 11

1. Section 5.3: Solutions, common mistakes and corrections:

Figure 1: Solution to Section 5.3, problem 5

Correction for problem 5: $\int_{2}^{3} \frac{1}{1-x} d x=-\int_{2}^{3} \frac{1}{1-x} d(1-x)=-\left.\ln (|1-x|)\right|_{2} ^{3}=-\ln 2$
Problem 73: Since $\frac{1}{2} \leq \frac{1}{1+x^{2}} \leq 1$ on $[0,1]$, we know from Table 5.6 , item 6 that

$$
\frac{1}{2} \leq \int_{0}^{1} \frac{1}{1+x^{2}} \leq 1
$$

2. Section 5.4: Solutions, common mistakes and corrections:

Figure 2: Solution to Section 5.4, problem 15

$$
=\frac{2}{\sqrt{3}}-\frac{\pi}{6}+2\left(\frac{2}{\sqrt{3}}-1\right)
$$

Figure 3: Solution to Section 5.4, problem 16

Figure 4: Solution to Section 5.4, problem 34

Figure 5: Solution to Section 5.4, problem 41

Figure 6: Solution to Section 5.4, problem 55

Figure 7: Solution to Section 5.4, problem 77

Figure 8: Solution to Section 5.4, problem 81

Figure 9: Solution to Section 5.4, problem 84

Remark: L'Hôpital's Rule can be used in cases where the antiderivative is not known, for eample:

$$
\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x}} \int_{1}^{x} \frac{1}{\sqrt{t+\sin t}} d x
$$

3. Chapter 5, additional and advanced problems: Solutions, common mistakes and corrections:

Figure 10: Solution to Chapter 5, additional and advanced problems: problem 21

