Brief solutions to selected problems in homework 07

1. Section 3.11: Solutions, common mistakes and corrections:

Figure 1: Solution to Section 3.11, problem 53 and some corrections

Remark:

$" d y=f^{\prime}(a) d x "$ is in the notation of "differential" which we skipped.
In the notation of linear approximation, the idea is:
Let $L(x)=f(a)+f^{\prime}(a)(x-a)$ be the linear approximation of $f(x)$ near $x=a$,

$$
f(x) \approx L(x) \Longrightarrow \Delta f \approx \Delta L
$$

where $\Delta f=f(x)-f(a)$ and $\Delta L=L(x)-L(a)$. It is easy to check by direct calculating that $L(x)-L(a)=f^{\prime}(a) \Delta x$ where $\Delta x=x-a$.
Therefore

$$
\Delta f \approx \Delta L=f^{\prime}(a) \Delta x
$$

Here $f(x)=\pi x^{2} h=30 \pi x^{2}, a=5.5$ and $\Delta x=0.5$.
Note: $d y=f^{\prime}(a) d x$ is just another way of saying $\Delta L=f^{\prime}(a) \Delta x$.

1. $E(a)=0$

$$
E(a)=f(a)-M(a-a)-C=0
$$

$$
3^{\circ} g(x)=m(x-a)+c
$$

$$
\rightarrow f(a)=C
$$

$$
=f(a)(x-a)+f(a)_{x}
$$

$$
2^{0} \quad \lim _{x \rightarrow a} \frac{f(x)-m(x-a)-c}{x-a}=0
$$

$$
\lim _{x \rightarrow a}\left(\frac{f(x)-c}{x-a}-m\right)=0
$$

$$
\rightarrow f^{\prime}(a)-m=0
$$

$$
m=f^{\prime}(a)
$$

Figure 2: Solution to Section 3.11, problem 66

Figure 3: Solution to Homework 07, problem 4
2. Chapter 3, additional and advanced problems: Solutions, common mistakes and corrections:

Figure 4: Solution to Chapter 3, additional and advanced problems: problem 16

$$
\begin{array}{rl}
21 & f(x) g(x)-f\left(x_{0}\right) g\left(x_{0}\right) \\
= & f(x) g(x)-f\left(x_{0}\right) g(x)+\frac{f\left(x_{0}\right) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)}{=0 \text { since } f\left(x_{0}\right)=0} \\
& \lim _{x \rightarrow x_{0}} \frac{f(x) g(x)-f\left(x_{0}\right) g\left(x_{0}\right)}{x-x_{0}} \\
= & \left.\lim _{x \rightarrow x_{0}} \frac{g(x)\left[f(x)-f\left(x_{0}\right)\right]}{x-x_{0}}+\lim _{x \rightarrow x_{0}} \right\rvert\,(x \rightarrow i) \cdot\left[\frac{\left.1(x)-g\left(x_{0}\right)\right]}{}\right. \\
= & \lim _{x \rightarrow x_{0}} g(x) \cdot f^{\prime}(x)>C=g\left(x_{0}\right) \cdot f^{\prime}(x) \quad \therefore g(x) \text { is diff }
\end{array}
$$

Figure 5: Solution to Chapter 3, additional and advanced problems: problem 21

$$
\begin{aligned}
& \hat{h}(x)=\left\{\begin{array}{cc}
x^{2} \sin 1 / x & x \neq 0 \\
0 & x=0
\end{array}\right. \\
& f(x)=x, \quad \text { f diff at } x=0, f(0)=0
\end{aligned}
$$

$$
g(x)=\left\{\begin{array}{l}
x \sin ^{1} x x+0 \\
x=0
\end{array}\right.
$$

$$
h=f g
$$

$$
\therefore \text { by } 21, h \text { is diff at } x=0
$$

Figure 6: Solution to Chapter 3, additional and advanced problems: problem 22(d)

Figure 7: Solution to Chapter 3, additional and advanced problems: problem 23, part 1

Figure 8: Solution to Chapter 3, additional and advanced problems: problem 23, part 2

