Brief solutions to selected problems in homework 05

1. Section 3.5: Solutions, common mistakes and corrections:

Problem 58:
Continuity: We have $\lim _{x \rightarrow 0^{+}} g(x)=g(0)=1$ and $\lim _{x \rightarrow 0^{-}} g(x)=b$. Therefore $\lim _{x \rightarrow 0^{+}} g(x)=$ $\lim _{x \rightarrow 0^{-}} g(x)=g(0)$ implies g is continuous at $x=0$ if and only if $b=1$.
Differentiability: $\lim _{x \rightarrow 0^{+}} \frac{g(x)-g(0)}{x-0}=0, \lim _{x \rightarrow 0^{-}} \frac{g(x)-g(0)}{x-0}=1$ for any $b \in \mathbb{R}$, therefore $\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}$ does not exist. g is not differentiable at $x=0$ for any $b \in \mathbb{R}$.
2. Problem 2:
$\frac{d}{d x}\left(\frac{\sin x}{x}\right)=\frac{x \cos x-\sin x}{x^{2}}=\frac{\cos x-\frac{\sin x}{x}}{x}$.
From the inequality (page 104 of the textbook)

$$
1>\frac{\sin x}{x}>\cos x, \quad \text { on } 0<x<\frac{\pi}{2}
$$

which also holds for $0>x>\frac{-\pi}{2}$ (since both $\frac{\sin x}{x}$ and $\cos x$ are even functions), we see that if $0<|x|<\frac{\pi}{2}$, then

$$
\left|\frac{d}{d x}\left(\frac{\sin x}{x}\right)\right|=\left|\frac{\cos x-\frac{\sin x}{x}}{x}\right|=\frac{\frac{\sin x}{x}-\cos x}{|x|}<\frac{1-\cos x}{|x|}=\frac{2 \sin ^{2} \frac{x}{2}}{|x|}<\frac{2\left(\frac{x}{2}\right)^{2}}{|x|}=\frac{|x|}{2}
$$

Overall, we have

$$
0 \leq\left|\frac{d}{d x}\left(\frac{\sin x}{x}\right)\right|<\frac{|x|}{2}, \quad \text { on } 0<|x|<\frac{\pi}{2}
$$

Since $\lim _{x \rightarrow 0} \frac{|x|}{2}=0$, it follows from the Sandwich Theorem that $\lim _{x \rightarrow 0}\left|\frac{d}{d x}\left(\frac{\sin x}{x}\right)\right|=0$, and therefore $\lim _{x \rightarrow 0} \frac{d}{d x}\left(\frac{\sin x}{x}\right)=0$.
3. Problem 4:

Ans: $=f^{\prime}(g(2)) \cdot g^{\prime}(2)=f^{\prime}(3) \cdot g^{\prime}(2)=0.4$
4. Section 3.7: Solutions, common mistakes and corrections:

Figure 1: Solution to Section 3.7, problem 48

Figure 2: Solution to Section 3.7, problem 51(a)

