Brief solutions to selected problems in homework 04

1. Section 3.2: Solutions, common mistakes and corrections:

Figure 1: Solution to Section 3.2, problem 17

Figure 2: Solution to Section 3.2, problem 48

Figure 3: Solution to Section 3.2, problem 58(a). Step 1: show that $f(0)=0$. Step 2: show that $f^{\prime}(0)=0$ as in problem 58(b)

Figure 4: Common mistakes to Section 3.2, problem 58(a)

Figure 5: Solution to Section 3.2, problem 58(b)
2. Section 3.3: Solutions, common mistakes and corrections:

Figure 6: A trick for Section 3.3, problem 23

Figure 7: A trick for Section 3.3, problem 47
a. $y=3 x^{2}-4$
Normal line:

$$
x=2 \Rightarrow 3 \cdot 2^{2}-4=8
$$

$$
\text { b. } y^{\prime \prime}=6 x, D
$$

$$
\text { when } x=0, g_{\text {min }}^{\prime}=-4_{x}
$$

$$
(0,1)
$$

$$
\text { C. } y^{\prime}=3 x^{2}-4=8
$$

$$
x=-2, y=1
$$

$$
\text { (1) } y-1=8(x+2)
$$

$$
\text { (z) } y-1=8(x-2)
$$

$$
y=8 x+15 x
$$

$$
y=8 x-15 x
$$

Figure 8: Solution to Section 3.3, problem 55

Figure 9: A trick for Section 3.3, problem 67
$33(90)$
$f(x)$ is alfferentioble for all x-values, that, is $f(x)$ is continuous on R.

$$
\begin{aligned}
& \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=f(-1) \\
\Rightarrow & -a+b=b-3
\end{aligned}
$$

$$
\Rightarrow a=-2 b=3 \Rightarrow b=\frac{-3}{2} x
$$

Figure 10: Solution to Section 3.3, problem 70
3. Solution to Homework 04, problem 4,5:

Figure 11: Solution to Homework 04, problem 4,5

