Brief solutions to selected problems in homework 02

1. Section 2.3: Solutions, common mistakes and corrections:

S23.
$$p^{35}$$
 $lim \sqrt{1-5x} = 4$,
 $x \to -3$

Find δ for $\epsilon = 0.05$

Ans $|\sqrt{1-5x} - 4| < 0.05$
 $\Rightarrow -0.05 < \sqrt{1-5x} - 4 < 0.05$
 $\Rightarrow 3.95 < \sqrt{1-5x} < 4.05$
 $\Rightarrow 3.95^{2} < 1-5x < 4.05^{2}$
 $\Rightarrow 3.95^{2} < 1-5x < 4.05^{2}$

Figure 1: Section 2.3, problem 35

Figure 2: Section 2.3, problem 43: mistake 1

Figure 3: Section 2.3, problem 43: mistake 2

Figure 4: Section 2.3, problem 43: mistake 3

因為要說明所選取的delta可以從(B)

推到(A), 反向的箭頭是必須的

Figure 5: Section 2.3, problem 43: mistake 4

- 2. Problem 2: False. Counter example: $f(x) = \sin \frac{1}{x}$, c = 0, L = 0 satisfies the statment, but the limit does not exist.
- 3. Problem 3:

2. If
$$\lim_{x \to c} f(x) = 1$$
 and $\lim_{x \to c} g(x) = M$

For any $\{ > 0 \}$, there exists $\{ > 0 \}$ and $\{ > 0 \}$, such that

 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} < \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ \} \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c \}$
 $0 < \{ x - c \} > \{ x - c$

Figure 6: Homework 02, problem 3