Brief solutions to selected problems in homework 02

1. Section 2.3: Solutions, common mistakes and corrections:

Figure 1: Section 2.3, problem 35

Figure 2: Section 2.3, problem 43: mistake 1

$$
\begin{aligned}
& \text { 43. } \\
& 0<|x-1|<\delta \\
& \Rightarrow-\delta<x-1<\delta \\
& \Rightarrow-\delta+1<x<\delta+1 \\
& \left|\frac{1}{x}-1\right|<\varepsilon \quad \text { (A) } \\
& <-\varepsilon<\frac{1}{x}-1<\varepsilon \\
& \Leftrightarrow-\varepsilon+1<\frac{1}{x}<\varepsilon+1 \\
& \Leftrightarrow \frac{1}{1+\varepsilon}<x<\frac{1}{1-\varepsilon} \\
& {\left[\begin{array} { l }
{ \delta + 1 \leq \frac { 1 } { 1 - \varepsilon } } \\
{ - \delta + 1 \geq \frac { 1 } { 1 + \varepsilon } }
\end{array} \Rightarrow \left[\begin{array}{l}
\delta \leq \frac{1}{1-\varepsilon}-1 \\
\text { take } \delta \leq 1-\frac{1}{1+\varepsilon} \\
\text { tan }\left[\frac{1}{1-\varepsilon}-1,1-\frac{1}{1+\varepsilon}\right]
\end{array}\right.\right.}
\end{aligned}
$$

因為要說明所選取的delta可以從（B）推到（A），反向箭頭是必要的

Figure 3：Section 2．3，problem 43：mistake 2

MON TUE WED THU FR
for any $\begin{aligned} & \mid>\delta>0 \text {, there exist } \delta>0\end{aligned}$
$\begin{aligned} 0<|x-1|<\delta & \Rightarrow\left|\frac{1}{x}-1\right|<\varepsilon \\ & \Leftrightarrow-\varepsilon<\frac{1}{x}-1<\varepsilon\end{aligned}$ $\Leftrightarrow 1-\varepsilon<\frac{1}{x}<1+\varepsilon$ $\Leftrightarrow \frac{1}{1-\varepsilon}>x>\frac{1}{1+\varepsilon}$
$\Leftrightarrow \frac{1-(1-\varepsilon)}{1-\varepsilon}>x-1>\frac{1-(1+\varepsilon)}{1+\varepsilon}$

$$
\Leftrightarrow \frac{-\varepsilon}{1-\varepsilon}<x-1<\frac{\varepsilon}{1-\varepsilon}
$$

take $\delta=\min \left(\frac{x \varepsilon}{1-\varepsilon}, \frac{\varepsilon}{1 \neq \varepsilon}\right)$

$$
\Leftrightarrow 0<|x-1|<\delta \Rightarrow\left|\frac{1}{x}-1\right|<\varepsilon
$$

Figure 4: Section 2.3, problem 43: mistake 3

```
43.
prove \(\frac{\lim }{x=1} \frac{1}{x}=1\)
\(0 k x-c|<\delta,|f(x)-c|<\varepsilon\)
Given \(1>\varepsilon<0\), there exists \(\delta>0\)
    \(0<|x-c|<\delta,|f(x)-\Delta|<\varepsilon\)
    \(\left|\frac{1}{x}-1\right|<\varepsilon\). (A)
\(\varepsilon-\varepsilon<\frac{1}{x}-1<\varepsilon\)
< \(=-\varepsilon+1<\frac{1}{x}<\varepsilon+1\)
\(\varepsilon \frac{1}{-\varepsilon+1}>x>\frac{1}{\varepsilon^{+1}}\)
    \(-\delta<x-1<\delta\)
    \(-\delta+1<x<\delta+1\)
    \(\left\{1-\delta \geqslant \frac{1}{8+1}\right.\)
    \(\left\{\delta+1 \leqslant \frac{1}{1-q}\right.\)
    \(\left\{\delta \leqslant 1-\frac{1}{1+\varepsilon}=\frac{\varepsilon}{1+\varepsilon}\right.\)
    \(\delta \leqslant \frac{1}{\xi-\varepsilon} 1=\frac{\varepsilon}{1-\varepsilon}\)
    \(\therefore \delta=\min \left\{\frac{\varepsilon}{1+\varepsilon}, ~ \frac{\varepsilon}{1-\varepsilon}\right\}\)
    \(=\frac{\varepsilon}{1-\varepsilon}\)
因為要說明所選取的delta可以從(B)
推到(A), 反向的箭頭是必須的
```

Figure 5：Section 2．3，problem 43：mistake 4
2．Problem 2：False．Counter example：$f(x)=\sin \frac{1}{x}, c=0, L=0$ satisfies the statement， but the limit does not exist．

3．Problem 3：

Figure 6: Homework 02, problem 3

