Homework 15

1. Section 8.3: Problems 11, 17, 27, 29, 33, 34, 37, 45, 57, 63, 65, 67.
2. Section 8.4: Problems $3,5,13,23,35,37,45,47,54,57$ (just solve it with one method of your choice).
3. Section 8.5: Problems 1, 3, 21, 23, 29, 32, 35, 37, 39, 41, 45, 47.
4. Chap 8, Additional and Advanced Exercises: Problems 41, 43, 45, 47, 49.
5. Overall practice on techniques of integration: (Important) As time permits, do as many as you can in odd-numbered problems in Chap 8, Practice Exercises problems 69-115 (page 545). and Section 8.1: Problems 9, 11, 13, 15, 19, 25, 33, 39, 48. They contain all the integration techniques and it is a good practice to figure out which one(s) to use for each problem.
Hints:
$\int e^{a x} \cos (b x) d x$ or $\int e^{a x} \sin (b x) d x$: integration by part twice.
$\int \frac{f(x)}{g(x)} d x$ where $f(x)$ and $g(x)$ are polynomials: if $\operatorname{deg} f \geq \operatorname{deg} g$, carry out the division, find the quotient and ratio, make sure that $\operatorname{deg} f<\operatorname{deg} g$ afterwards.
Computations involving antiderivative of $\tan ^{2} x$: $\operatorname{try} \tan ^{2} x=\sec ^{2} x-1$
$\int f(x) \ln x d x$: try $y=\ln x, x=e^{y}$ and proceed.
$\int \frac{\sin ^{2 l} x}{\cos ^{2 k+1}} d x$: multiply the factor $\frac{\cos x}{\cos x}$ and proceed. May need the technique of partial fraction (section 8.5) in the end.
Similarly for $\int \frac{\cos ^{2 k} x}{\sin ^{2 l+1}} d x\left(\times \frac{\sin x}{\sin x}\right), \quad \int \frac{\tan ^{2 k+1} x}{\sec ^{n} x} d x\left(\times \frac{\sec x}{\sec x}\right), \int \frac{\sec ^{n} x}{\tan ^{2 k+1} x} d x\left(\times \frac{\tan x}{\tan x}\right)$, or $\int \frac{\tan ^{m} x}{\sec ^{2 l}} d x\left(\times \frac{\sec ^{2} x}{\sec ^{2} x}\right)$.
