Homework 07

1. Section 3.7:

Let f^{-1} be the inverse function of f. Suppose f and f^{-1} are twice differentiable (i.e. both first and second derivative exist). Derive the formula of $\left(f^{-1}\right)^{\prime \prime}$ in terms of $f^{\prime}, f^{\prime \prime}$ and f^{-1}.
2. Section 3.9: problems $9,11,21,23,25,33,35,39,53,55$.
3. Section 3.11: problems $9,11,16(\mathrm{c}, \mathrm{d}), 17,53,55,65(\mathrm{a}, \mathrm{b}, \mathrm{f}($ for $f(x)$ only $)), 66$.
4. A key point in section 3.11 is that the error of linear approximation, $f(x)-L(x)$, satisfies

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)-L(x)}{x-a}=0 \tag{1}
\end{equation*}
$$

provided f is differentiable at $x=a$.
The following statement gives more details about the error $f(x)-L(x)$ and will be introduced in the near future. Take this statement for granted for now:

If f is twice differentiable near $x=a$, then

$$
\begin{equation*}
f(x)-L(x)=\frac{1}{2} f^{\prime \prime}(c)(x-a)^{2} \tag{2}
\end{equation*}
$$

for some c between x and a.
From (2), we have an error bound

$$
\begin{equation*}
|f(x)-L(x)| \leq \frac{1}{2}\left(\max _{c \text { between } x \text { and } a}\left|f^{\prime \prime}(c)\right|\right)(x-a)^{2} \tag{3}
\end{equation*}
$$

Use (3) to estimate the error of linear approximation (i.e. find out $|f(x)-L(x)| \leq \cdots$) for problem 17 (b) of Section 3.11.
5. Chapter 3, Practice Exercises (p230-p231): problems 96, 125, 129.
6. Chapter 3, additional and advanced problems (p235): problems 16, 21, 22(d), 23.

