Homework 04

1. Section 3.2: problems $17,48\left(^{*}\right), 57,58\left(^{*}\right)$.

Hint for problem 17: Use the definition and the technique of "rationalizing the numerator or demonimator".
Remark: Optionally, you can hand in problems with $\left(^{*}\right)$ by Oct 12 in class for reviews and corrections.
2. Read about second and higher order derivatives at end of section 3.3.
3. Section 3.3: problems 5, 23, 37, 47, 55(*), 67, 70(*), $75(\mathrm{c})$.
4. Use product rule to show (and memorize) that

$$
\begin{aligned}
\frac{d}{d x}\left|\begin{array}{cc}
f_{11}(x) & f_{12}(x) \\
f_{21}(x) & f_{22}(x)
\end{array}\right| & =\left|\begin{array}{cc}
f_{11}^{\prime}(x) & f_{12}(x) \\
f_{21}^{\prime}(x) & f_{22}(x)
\end{array}\right|+\left|\begin{array}{cc}
f_{11}(x) & f_{12}^{\prime}(x) \\
f_{21}(x) & f_{22}^{\prime}(x)
\end{array}\right| \\
& =\left|\begin{array}{ll}
f_{11}^{\prime}(x) & f_{12}^{\prime}(x) \\
f_{21}(x) & f_{22}(x)
\end{array}\right|+\left|\begin{array}{ll}
f_{11}(x) & f_{12}(x) \\
f_{21}^{\prime}(x) & f_{22}^{\prime}(x)
\end{array}\right|
\end{aligned}
$$

What are the corresponding formulae for 3 by 3 determinants, 4 by 4 determinants, etc.?
5. Apply the product rule repeatedly to get $\frac{d^{n}}{d x^{n}}(u(x) v(x))$ in terms of derivatives of $u(x)$ and $v(x)$. Start with $n=2$, then $n=3, \cdots$, to find the formula.

