Homework 02

1. Section 2.3: problems $35,43,49,53,54$.
2. Section 2.3: Suppose that $f(x)$ is defined on $(c-a, c) \cup(c, c+a)$ for some $a>0$. If $f(x)$ satisfies the following statement, then is it true that $\lim _{x \rightarrow c} f(x)=L$? Prove it if true, find a counter example if not true.

For any $\varepsilon>0$ and any $\delta>0$, there exists a number $x \in(c-\delta, c) \cup(c, c+\delta)$ such that $|f(x)-L|<\varepsilon$.
3. Section 2.3: Use the $\varepsilon-\delta$ argument to prove the following statement: If $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, then $\lim _{x \rightarrow c}(4 f(x)-2 g(x))=4 L-2 M$. Hint: Note that if $a<b$ then $-a>-b$.
4. Section 2.4: Problems 25, 33, 39, 41, 47.
5. Chap 2, Additional and Advanced Exercises (page 136): Problems 25 (Hint: $1-\cos x=$ $\left.2 \sin ^{2} \frac{x}{2}\right), 26$.

