Homework Assignment for Chapter 02

1. Section 2.2: 33, 41, 63, 77, 81, 87.

Remark: For problem 87, just find the limit. Need not plot it. To find the limit, use the algebraic identity ' a^{3} - $b^{3}=\cdots$ ' mentioned in lecture 01 video.
2. Section 2.3: problems 35, 43, 49, 53.
3. Use the $\varepsilon-\delta$ argument to prove the following statement:

If $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, then $\lim _{x \rightarrow c}(4 f(x)-2 g(x))=4 L-2 M$. Hint: Note that if $a<b$ then $-a>-b$.
4. Suppose that $f(x)$ is defined on $(c-a, c) \cup(c, c+a)$ for some $a>0$. If $f(x)$ satisfies the following statement, then is it true that $\lim _{x \rightarrow c} f(x)=L$? Prove it if true, find a counter example if not true.

For any $\varepsilon>0$ and any $\delta>0$, there exists a number $x \in(c-\delta, c) \cup(c, c+\delta)$ such that $|f(x)-L|<\varepsilon$.
5. (Optional) Section 2.3: Problems 57 (see derivations of this definition in Lecture 03).
6. Section 2.4: Problems 26, 34, 42, 48.
7. Chap 2, Additional and Advanced Exercises: Problems 25 (Hint: $1-\cos x=2 \sin ^{2} \frac{x}{2}$), 26 on page 136.
8. Section 2.5: problems 37 (just find the limit, ignore the continuity question) 64, 67, 68, 77 (Need not graph it).
9. Section 2.6: problems 61, 85, 92, 93, 95, 97.
10. Study definition of the limits in p102, p119, p125 and p131. How would you define the four limits

$$
\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty ?
$$

Verify the statement

$$
\lim _{x \rightarrow \infty}-x^{3}=-\infty
$$

using the definition you wrote.

