Brief solutions to Quiz 10

June 09, 2022:

1. (30 pts) Suppose $\boldsymbol{F}(x, y)=(M(x, y), N(x, y))$, both M and N are continuously differentiable (i.e. 1st derivatives are all continuous) on \mathbb{R}^{2}. Let C be a simple closed curve and \mathcal{R} the region enclosed by C. State both forms of Green's Theorem (need not repeat the statements above).

Ans:
See Theorem 4 and Theorem 5 on Section 16.4 of the textbook.
2. $(30 \mathrm{pts})$ Let $\boldsymbol{F}(x, y)=(x+y+2,2 x+y-1)$. Use any method or Theorem (including the formula of area of an ellipse) to evaluate $\oint_{C} \boldsymbol{F} \cdot \boldsymbol{T} d s$ where C is the ellipse $\left\{\frac{x^{2}}{4}+y^{2}=\right.$ $1\}$.

Ans:

From Green's Theorem in tangential form:

$$
\begin{equation*}
\oint_{\frac{x^{2}}{4}+y^{2}=1} \boldsymbol{F} \cdot \boldsymbol{T} d s=\oint_{\frac{x^{2}+y^{2}=1}{4}} M d x+N d y=\iint_{\frac{x^{2}+y^{2}<1}{4}}\left(N_{x}-M_{y}\right) d A \tag{20pts}
\end{equation*}
$$

Since $N_{x}-M_{y}=1$, area of the ellipse $=a b \pi=2 \pi$. Answer $=2 \pi . \quad(\mathbf{1 0} \mathbf{p t s})$
3. (40 pts) Prove Green's Theorem for $\boldsymbol{F}(x, y)=(M(x, y), 0), M$ is continuously differentiable, in either form (but not both) on the region \mathcal{R} enclosed by $x=0, y=0$ and $\frac{x}{-2}+y=1$ in the 2 nd quadrant. That is, the triangle with vertices $(-2,0),(0,0)$ and $(0,1)$. Show all details including the parametrizations you choose.

Ans:

