Brief solutions to Midterm 2 (v02)

1. (10 pts) Evaluate

$$
\frac{d}{d y} \int_{1}^{2+y^{2}} \frac{\cos (x y)}{x} d x
$$

Ans:

$$
\begin{gather*}
=\left.\frac{\cos (x y)}{x}\right|_{x=2+y^{2}} \cdot \frac{d}{d y}\left(2+y^{2}\right)+\int_{1}^{2+y^{2}} \frac{d}{d y} \frac{\cos (x y)}{x} d x \quad(\mathbf{6} \mathbf{p t s}) \\
=\frac{\cos \left(\left(2+y^{2}\right) y\right)}{2+y^{2}} \cdot 2 y+\int_{1}^{2+y^{2}}-\sin (x y) d x \quad(\mathbf{2} \mathbf{p t s}) \\
=\frac{\cos \left(\left(2+y^{2}\right) y\right)}{2+y^{2}} \cdot 2 y+\frac{1}{y}\left(\cos \left(\left(2+y^{2}\right) y\right)-\cos y\right) \quad(2 \mathbf{p t s}) \tag{2pts}
\end{gather*}
$$

2. (10 pts) Find the equation of plane normal to the following curve at $(1,-1,1)$

$$
\left\{\begin{array}{l}
x^{2}+2 y^{2}+3 z^{2}=6 \\
x+y+z=1
\end{array}\right.
$$

Ans:
First compute the two gradients at $(1,-1,1)$

$$
(2 x, 4 y, 6 z)_{(1,-1,1)}=(2,-4,6)(\mathbf{2} \mathbf{p t s})
$$

and

$$
\left.(1,1,1)\right|_{(1,-1,1)}=(1,1,1) .(2 \mathrm{pts})
$$

The normal vector of the plane is parallel to the outer product of these two gradients:

$$
\boldsymbol{n}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & 1 & 1 \\
1 & -2 & 3
\end{array}\right|=(5,-2,-3) .(2 \mathrm{pts})
$$

Therefore, the equation of the plane is

$$
5(x-1)-2(y+1)-3(z-1)=0 .(4 \text { pts })
$$

3. (10 pts) Find absolute maxima and minima of $f(x, y)=x^{2}+x y+y^{2}-6 x$ on the rectangular domain $0 \leq x \leq 5,-3 \leq y \leq 0$.
Ans:

Figure 1: The gradient analysis for problem 5.

Method I:

First find the gradient:

$$
\nabla f(x, y)=(2 x+y-6, x+2 y)
$$

Therefore one can plot the gradients as in figure 1 ($5 \mathbf{p t s}$).
From the plot it is easy to see that $f(4,-2)=-12$ is the only local minimum since there is no local minimum on the boundary. Therefore $f(4,-2)=-12$ is also the absolute minimum (2 pts).
Moreover, the local maximum consists of the three corners $(0,-3),(5,-3)$ and $(5,0)$. Upon comparing the values of f on the corners $(0,-3),(5,-3)$ and $(5,0)$ it follows that the absolute maxima is $f(0,-3)=9(\mathbf{3 ~ p t s})$.

Method II:

Find all critical points in
interior: $f(4,-2)=-12$. (2 pts)
edges: $f(3,0)=-9, f\left(\frac{9}{2},-3\right)=-\frac{45}{4}, f\left(5,-\frac{5}{2}\right)=-\frac{45}{4}$. (4 pts)
corners: $f(0,0)=0, f(5,0)=-5, f(0,-3)=9, f(5,-3)=11$. (2 pts)
2 pts below will be given only when all above are correctly computed:
Absolute minimum: $f(4,-2)=-12$. Absolute maximum: $f(0,-3)=9$. $(2 \mathrm{pts})$
4. (10 pts) Use Lagrangian multipliers (and only Lagrangian multipliers) to find extreme values of $f(x, y, z)=x y+2 z^{2}$ on

$$
\left\{\begin{array}{l}
x^{2}+y^{2}+z^{2}=9 \\
x-y=0
\end{array}\right.
$$

Ans: Let $g_{1}(x, y, z)=x^{2}+y^{2}+z^{2}-9, g_{2}(x, y, z)=x-y$.

Solve from

$$
\left\{\begin{array}{l}
g_{1}(x, y, z)=0 \tag{4pts}\\
g_{2}(x, y, z)=0 \\
\nabla f(x, y, z)=\lambda_{1} \nabla g_{1}(x, y, z)+\lambda_{2} \nabla g_{2}(x, y, z)
\end{array}\right.
$$

Critical points: $(x, y, z)=(0,0, \pm 3), \pm\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}, 0\right) .(4 \mathrm{pts})$
2 pts below will be given only when all above are correctly computed:
Max: $f(0,0, \pm 3)=18$. Min: $f\left(\pm\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}, 0\right)\right)=\frac{9}{2} .(2$ pts $)$
5. (10 pts) Let $f(x, y)=x^{3}+y^{3}$ and $g(r, \theta)=f(r \cos \theta, r \sin \theta)$. Evaluate

$$
\frac{\partial^{2} g}{\partial r^{2}}+\frac{1}{r} \frac{\partial g}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} g}{\partial \theta^{2}}
$$

Ans:

$$
\begin{align*}
\frac{\partial g}{\partial r} & =3 r^{2} \cos ^{3} \theta+3 r^{2} \sin ^{3} \theta \tag{2pts}\\
\frac{\partial^{2} g}{\partial r^{2}} & =\frac{\partial}{\partial r}\left(\frac{\partial g}{\partial r}\right)=6 r \cos ^{3} \theta+6 r \sin ^{3} \theta \tag{2pts}\\
\frac{\partial g}{\partial \theta} & =-3 r^{3} \cos ^{2} \theta \sin \theta+3 r^{3} \cos \theta \sin ^{2} \theta \tag{2pts}\\
\frac{\partial^{2} g}{\partial \theta^{2}} & =\frac{\partial}{\partial \theta}\left(\frac{\partial g}{\partial \theta}\right)=3 r^{3}\left(3 \sin ^{2} \theta \cos \theta+3 \cos ^{2} \theta \sin \theta-\cos \theta-\sin \theta\right) \tag{2pts}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\frac{\partial^{2} g}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial g}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} g}{\partial \theta^{2}}= & \left(6 r \cos ^{3} \theta+6 r \sin ^{3} \theta\right)+\left(3 r \cos ^{3} \theta+3 r \sin ^{3} \theta\right) \\
& +3 r\left(3 \sin ^{2} \theta \cos \theta+3 \cos ^{2} \theta \sin \theta-\cos \theta-\sin \theta\right) \\
= & 6 r \cos \theta+6 r \sin \theta \tag{2pts}
\end{align*}
$$

6. (10 pts) Taylor's formula for $f(x, y)$: Assume all partial derivatives of any order of f are continuous. Find a quadratic approximation of $f(x, y)=\ln (2 x+y+1)$ near the origin.
Ans:
Method I: Quadratic approximation:

$$
\begin{gathered}
f_{x}(x, y)=\frac{2}{1+2 x+y}, \quad f_{y}(x, y)=\frac{1}{1+2 x+y},(2 \mathrm{pts}) \\
f_{x x}(x, y)=\frac{-4}{(1+2 x+y)^{2}}, \quad f_{x y}(x, y)=\frac{-2}{(1+2 x+y)^{2}}, \quad f_{y y}(x, y)=\frac{-1}{(1+2 x+y)^{2}}(3 \mathrm{pts})
\end{gathered}
$$

$$
\begin{aligned}
Q(x, y) & =f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+\frac{1}{2}\left(f_{x x}(0,0) x^{2}+2 f_{x y}(0,0) x y+f_{y y}(0,0) y^{2}\right) \\
& =0+2 x+y-\frac{1}{2}\left(4 x^{2}+4 x y+y^{2}\right)(5 \mathbf{p t s})
\end{aligned}
$$

Method II:

Let $z=2 z+y$ and consider Taylor's formula for $\ln (1+z)$. Since the quadrative approximation of $\ln (1+z)$ is $Q(z)=z-\frac{1}{2} z^{2}$. We see that

$$
Q(x, y)=(2 x+y)-\frac{1}{2}(2 x+y)^{2} .
$$

7. $(10 \mathrm{pts})$ Evaluate $\left(\frac{\partial u}{\partial x}\right)_{y}$ at $(x, y, z, w)=(1,1,1,1)$ where $u(x, y, z, w)=x^{2}+y^{2}+z^{2}+w^{2}$ with the constraint $x+y+z+w=4$ and $x-y+z-w=0$.
Ans: First we compute z_{x} and w_{z} at $(1,1,1,1)$.

$$
\begin{aligned}
1+z_{x}+w_{x} & =0(2 \mathbf{p t s}) \\
& 1+z_{x}-w_{x}=0(2 \mathbf{p t s}) \\
\Rightarrow \quad & z_{x}=-1, w_{x}=0(2 \mathbf{p t s})
\end{aligned}
$$

Now we compute $\left(\frac{\partial u}{\partial x}\right)_{y}$ at $(1,1,1,1)$.

$$
\left(\frac{\partial u}{\partial x}\right)_{y}=2 x+2 z z_{x}+\left.2 w w_{x}\right|_{(1,1,1,1)}(\mathbf{2} \mathbf{p t s})=2-2=0 .(2 \mathbf{p t s})
$$

8. (15 pts) Let $f(x, y)=\frac{x^{3}+y^{3}}{x^{2}+y^{2}}$, for $(x, y) \neq(0,0)$ and $f(0,0)=0 . \quad P=(0,0)$ and $\boldsymbol{u}^{\theta}=(\cos \theta, \sin \theta), \theta \in[0,2 \pi]$.
(a) Is f continuous at $(0,0)$? Explain.
(b) For fixed θ, write down the definition of the directional derivative $\left(\frac{d f}{d s}\right)_{u^{\theta}, P}$ and evaluate it.
(c) Does f have a linear approximation at $(0,0)$? Explain.

Ans:
(a) $(5 \mathrm{pts})$

Let

$$
x=r \cos \theta, y=r \sin \theta
$$

it follows that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{r \rightarrow 0} \frac{r^{3}\left(\cos ^{3} \theta+\sin ^{3} \theta\right)}{r^{2}}=0
$$

therefore f is continuous at $(0,0)$.
(b) (5 pts)

$$
\begin{gathered}
\left(\frac{d f}{d s}\right)_{u^{\theta}, P}=\lim _{h \rightarrow 0} \frac{f(h \cos \theta, h \sin \theta)-f(0,0))}{h} \\
\quad=\lim _{h \rightarrow 0} \frac{h\left(\cos ^{3} \theta+\sin ^{3} \theta\right)}{h}=\cos ^{3} \theta+\sin ^{3} \theta
\end{gathered}
$$

(c) $(5 \mathrm{pts})$

Since $\nabla f(0,0) \cdot \boldsymbol{u}^{\theta}=(1,1) \cdot(\cos \theta, \sin \theta) \neq \cos ^{3} \theta+\sin ^{3} \theta=\left(\frac{d f}{d s}\right)_{\boldsymbol{u}^{\theta}, P}, f$ is not differentiable at $(0,0)$. Therefore f does not have a linear approximation.
9. Evaluate $\int_{0}^{2} \int_{y}^{2} \frac{\sin x}{x} d x d y$.

Ans: we have

$$
\begin{aligned}
& \int_{0}^{2} \int_{y}^{2} \frac{\sin (x)}{x} d x d y \\
= & \int_{0}^{2} \int_{0}^{x} \frac{\sin (x)}{x} d y d x \quad(\mathbf{6} \mathbf{p t s}) \\
= & \int_{0}^{2}\left(\frac{\sin (x)}{x}\right)(x) d x \quad(\mathbf{2} \mathbf{p t s}) \\
= & \int_{0}^{2} \sin (x) d x=1-\cos 2 \quad(\mathbf{2} \mathbf{p t s})
\end{aligned}
$$

10. (10 pts) Find all critical points of $f(x, y)=x^{4}+y^{4}+4 x y$ and determine whether they are local minima, local maxima or neither.
Ans:

$$
\begin{array}{r}
f_{x}=4 x^{3}+4 y, \quad f_{y}=4 y^{3}+4 x, \quad(\mathbf{1} \mathbf{p t s}) \\
\left(f_{x}, f_{y}\right)=(0,0) \Longrightarrow(x, y)=(0,0),(1,-1),(-1,1) \quad(\mathbf{2} \mathbf{p t s}) \tag{2pts}\\
f_{x x}=12 x^{2}, f_{x y}=4, f_{y y}=12 y^{2}, \quad(\mathbf{3} \mathbf{p t s}) \\
f_{x y}^{2}-f_{x x} f_{y y}=16,-128,-128 \text { at }(0,0),(1,-1),(-1,1), \text { respectively. }
\end{array}
$$

Therefore $f(0,0)=0$ is neither a local maximum nor a local minimum (saddle point count as correct). At $(1,-1)$ and $(-1,1), f_{x x}=12>0$, therefore both $f(1,-1)=-2$ and $f(-1,1)=-2$ are local minima. (2 pts)
11. (10 pts) Find the Taylor series generated by $\sin ^{-1} x$, centered at 0 .

Ans:

$$
\sin ^{-1} x=\int_{0}^{x}\left(1-t^{2}\right)^{\frac{-1}{2}} d t(\mathbf{2} \mathbf{p t s})
$$

$$
\begin{align*}
& =\int_{0}^{x}\left(1-\frac{1}{2}\left(-t^{2}\right)+\frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}\left(-t^{2}\right)^{2}-\frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}}{3!}\left(-t^{2}\right)^{3}+\cdots++(-1)^{n} \frac{\frac{1}{2} \cdot \frac{3}{2} \cdots \frac{2 n-1}{2}}{n!}\left(-t^{2}\right)^{n}+\cdots\right) d t(5 \mathbf{p t} \\
& =x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^{7}}{7}+\cdots+\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2 n-1}{2 n} \cdot \frac{x^{2 n+1}}{2 n+1}+\cdots(\mathbf{3 p t s}) \tag{3pts}
\end{align*}
$$

12. (10 pts) Evaluate $\sum_{n=0}^{\infty} \frac{x^{n}}{n+2}$ on $|x|<1$ using computational rules of power series.

Ans:
The value is $\frac{1}{2}$ for $x=0$. ($2 \mathbf{p t s}$).
For $x \neq 0$,

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{x^{n}}{n+2} & =x^{-2}\left(\sum_{n=0}^{\infty} \frac{x^{n+2}}{n+2}\right) \\
& =x^{-2}\left(\sum_{n=0}^{\infty} \int_{0}^{x} t^{n+1} d t\right)(3 \mathbf{p t s}) \tag{3pts}\\
& =x^{-2}\left(\int_{0}^{x} \sum_{n=0}^{\infty} t^{n+1} d t\right) \\
& =x^{-2}\left(\int_{0}^{x} \frac{t}{1-t} d t\right)(3 \mathrm{pts}) \\
& =x^{-2}(-x-\ln (1-x))=-\frac{1}{x}-\frac{\ln (1-x)}{x^{2}} .
\end{align*}
$$

