
Calculus I, Spring 2022

Brief solutions to Midterm 1

Mar 24, 2022.

1. (12 pts) Are the integrals (a):

∫ 1

0

1√
x+ x3

dx and (b):

∫ ∞
1

tan(
1

x
) dx convergent?

Explain.

Answer:

(a): Since lim
x→0

1√
x+ x3

1√
x

= 1 and

∫ 1

0

1√
x
dx converges (2 pts), therefore

∫ 1

0

1√
x+ x3

dx

converges by Limit Comparison Test (4pts).

(b): Since lim
x→∞

tan(
1

x
)

1

x

= 1 and

∫ ∞
1

1

x
dx diverges (2 pts), therefore

∫ ∞
1

tan(
1

x
) dx

diverges by Limit Comparison Test (4pts).

2. (12 pts) Evaluate lim
n→∞

log

(
∞∑
k=n

k−3

)
log n

. Give details.

Hint: If the limit is p, this means that
∞∑
k=n

k−3 is approximately np. Find p and prove

it. Recall the proof of one of the convergence tests.

Answer:

∵ f(k) = k−3 ≥ 0 ↘ and

∫ ∞
1

1

x3
dx converges. ∴ Converges.

∵
1

2n2
=

∫ ∞
n

1

x3
dx ≤

∞∑
k=n

1

k3
≤
∫ ∞
n−1

1

x3
dx =

1

2(n− 1)2

⇒ −(log 2 + 2 log n)

log n
≤

log

(
∞∑
k=n

k−3

)
log n

≤ −(log 2 + 2 log(n− 1))

log n

Let n→∞, we see that the answer = -2.



3. (12 pts) find
∞∑
n=1

nxn and
∞∑
n=1

n2xn on |x| < 1 using computational rules for power

series (multiplication, differentiation, integration, etc.).

Answer:

1 + x+ x2 + . . . =
1

1− x
(2 pts)

⇒ x+ 2x2 + 3x3 + . . . = x

(
1

1− x

)′
=

x

(1− x)2
(5 pts)

⇒ x+ 22x2 + 32x3 + . . . = x

(
x

(1− x)2

)′
=
x(1 + x)

(1− x)3
(5 pts).

4. (12 pts)

(a) Show that the series 1− 1

2 · 1!
+

1

4 · 2!
−· · ·+(−1)n

1

2n · n!
+· · · converges absolutely.

(b) Find the sum of the series in (a). Prove your answer (that is, the equality holds).

Answer:

(a) Ratio test:

lim
n→∞

1
2n+1(n+1)!

1
2nn!

= 0 < 1, convergent. (6 pts)

(b) Sum = e−1/2. (2 pts) Since

1− 1

2 · 1!
+

1

4 · 2!
− · · ·+ (−1)n

1

2n · n!
+ · · · = Tex,0(x = −1

2
)

Tex,0(−
1

2
) = e−

1
2 if and only if lim

n→∞
Rn(−1

2
) = 0.

|Rn(−1

2
)| ≤ ecn+1

(n+ 1)!

1

2n+1
≤ 1

(n+ 1)!

1

2n+1
→ 0 where cn+1 ∈ (−1

2
, 0) . (4 pts)

5. (12 pts) Find Tsin−1,0(x) and its radius of convergence.

Answer:

sin−1 x =

∫ x

0

(1− t2)
−1
2 dt =

=

∫ x

0

(1−1

2
(−t2)+

1
2
· 3
2

2!
(−t2)2−

1
2
· 3
2
· 5
2

3!
(−t2)3+· · ·++(−1)n

1
2
· 3
2
· · · 2n−1

2

n!
(−t2)n+· · · )dt

= x+
1

2

x3

3
+

1

2
· 3

4
· x

5

5
+

1

2
· 3

4
· 5

6
· x

7

7
+ · · ·+ 1

2
· 3

4
· · · 2n− 1

2n
· x

2n+1

2n+ 1
+ · · · (8 pts)

Radius of convergence = 1 by ratio test (4 pts).
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6. (12 pts) Give an approximation of

∫ 1
2

0

sin(x2) dx to within 10−8. Give the formula of

the approximation, but need not find the numerical value. Explain why the error is
less than 10−8.

Answer:

sinx2 = x2 − 1

3!
(x2)3 +

1

5!
(x2)5 − 1

7!
(x2)7 + · · · =

∞∑
k=0

(−1)k
(x2)2k+1

(2k + 1)!

From the error estimate for alternating series:∣∣∣∣∣sinx2 −
n∑

k=0

(−1)k
(x2)2k+1

(2k + 1)!

∣∣∣∣∣ ≤
∣∣∣∣ (x2)2n+3

(2n+ 3)!

∣∣∣∣
error =

∣∣∣∣∣
∫ 1

2

0

sinx2 dx−
n∑

k=0

∫ 1
2

0

(−1)k
(x2)2k+1

(2k + 1)!
dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ 1

2

0

(x2)2n+3

(2n+ 3)!
dx

∣∣∣∣∣ (4pts)

We want ∫ 1
2

0

(x2)2n+3

(2n+ 3)!
dx =

1

(4n+ 7)24n+7(2n+ 3)!
< 10−8

Any n ≥ 2, will do since for n = 2, (4n+ 7)24n+7(2n+ 3)! = 15 · 215 · 7! > 108 (4pts).

Answer:

Approximation =
2∑

k=0

(−1)k
1

(4k + 3) · 24k+3 · (2k + 1)!
(4 pts).

7. (6 pts) Evaluate lim
x→0

sinx
x
− cosx

x2
.

Answer:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · , cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · ,

Answer:

lim
x→0

sinx
x
− cosx

x2
= lim

x→0

(1− x2

3!
+ · · · )− (1− x2

2!
+ · · · )

x2
=

1

3
(6pts)

8. (6 pts) Let f(x) = sinx
cos 2x

. Find Tf,0(x) upto x5 term.

Answer:

sinx = x− x3

3!
+
x5

5!
− · · · , cos 2x = 1− (2x)2

2!
+

(2x)4

4!
− · · · ,
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On |x| < π

4
where cos 2x 6= 0, we can use long division to get

f(x) =
x− 1

6
x3 +

1

120
x5 − · · ·

1− 2x2 +
2

3
x4 − · · ·

= x+
11

6
x3 +

361

120
x5 + · · · (2 + 2 + 2pts),

Since f has a power series representation on an open interval, therefore f(x) = Tf,0(x)
(See problem 9(a)).

9. (4+4+8+8 pts) True or False? Prove it if true, give a counter example if false.

(a) If f(x) =
∞∑
n=0

anx
n on |x| < 1, then an =

f (n)(0)

n!
.

(b) If
∞∑
n=1

an converges, then
∞∑
n=1

nan converges.

(c) If g(x) = f(0) +
∞∑
n=1

f (n)(0)

n!
xn on |x| < 1, then f(x) = g(x) on |x| < 1.

(d) If
∞∑
n=0

anx
n converges on |x| < 1, then

∞∑
n=0

√
nanx

n also converges on |x| < 1.

Answer:

(a) True (1 pts). By term by term differentiation Theorem (3 pts).

(b) False (1 pts).
∑
n

(−1)n

n
converges, but

∑
n

(−1)n diverges (3 pts).

(c) False (2 pts). Take f(x) = e−1/x
2

for x 6= 0, and f(x) = 0 for x = 0. Then

f (n)(0) = 0, ∀ n ≥ 0. Therefore f(0) +
∞∑
n=1

f (n)(0)

n!
xn = 0 6= f(x), if x 6= 0

(correct example: 2 pts, correct explanation: 4 pts).

(d) True (4 pts).

Proof 1: Given |x| < 1, take y with |x| < |y| < 1, we have
∑
n

any
n converges

absolutely. Moreover, |
√
nanx

n| ≤ |anyn| for n large enough since
√
n

∣∣∣∣xy
∣∣∣∣n → 0

as n→∞. From direct comparison test,
∑
n

√
nanx

n also converges absolutely.

Proof 2: Firstly,
∑
n

anx
n converges absolutely. From term by term differentia-

tion Theorem,
∑
n

nanx
n converges absolutely. Since |

√
nanx

n| ≤ |nanxn|, from

direct comparison test,
∑
n

√
nanx

n also converges absolutely.
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(4 pts).

Remark: We know that the radius of convergence R ≥ 1. But we can conclude

that lim
n→∞

|an|
1
n =

1

R
only if lim

n→∞
|an|

1
n exist, which may not be true. Similarly for

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣. See the example in page 9 of lecture 06.
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