Brief solutions to selected problems in homework week 11

1. Section 14.10, problem 12 :

Remark:

$$
\begin{aligned}
& f_{x}+f_{w} w_{x}+f_{z} z_{x}=0 \\
& g_{x}+g_{w} w_{x}+g_{z} z_{x}=0
\end{aligned}
$$

Two linear equations for the two unknowns z_{x} and w_{x}, solve for z_{x} and w_{x}.
2. Problem 2:

5 variables ($u, x, y, z, w)$ and 3 (equations+constraints). Therefore 2 independent variables (must be x, y since we want $\left(\frac{\partial u}{\partial x}\right)_{y}$.

So $f(x, y, z(x, y), w(x, y))=0, g(x, y, z(x, y), w(x, y))=0$ and $u=U(x, y, z(x, y), w(x, y))$.
From the u equation, $u_{x}=U_{x}+U_{z} z_{x}+U_{w} w_{x}$.
From f and g constraints, we have as in problem 12:

$$
\begin{aligned}
& f_{x}+f_{w} w_{x}+f_{z} z_{x}=0 \\
& g_{x}+g_{w} w_{x}+g_{z} z_{x}=0
\end{aligned}
$$

then solve for w_{x} and z_{x}, plug them into $u_{x}=U_{x}+U_{z} z_{x}+U_{w} w_{x}$ to get the desired formula of $\left(\frac{\partial u}{\partial x}\right)_{y}$.

