Homework Assignment for Week 16

1. Section 16.5: Problems 5, 11, 13, 19, 31, 33, 49, 51, 55, 56.

Hints and Remarks:
Problems 5-19: Among other choices, most of the parametrizations can be chosen as $x(r, \theta)=r \cos \theta, y(r, \theta)=r \sin \theta$ and $z(r, \theta)=f(x(r, \theta), y(r, \theta))$, or $\boldsymbol{r}=\boldsymbol{r}(\theta, \phi)$ as in spherical coordinate with ρ fixed as a constant.
In problem 33, it is more consistent with the spherical coordinate in the textbook to interchange $\sin \phi$ and $\cos \phi$ in $\boldsymbol{r}(\theta, \phi)$, then proceed (the answer will be different after the interchange).
Also note that the parameters (θ, ϕ) in $\boldsymbol{r}(\theta, \phi)$ are different from the angles in spherical coordinates (neither before nor after the above mentioned interchange). A similar case is the parametrization $x=a \cos \tilde{\theta}, y=a \sin \tilde{\theta}$ for the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Here $\tilde{\theta}$ is not the same θ in polar coordinate which satisfies $\tan \theta=\frac{y}{x}$.
Problem 51: Read Example 8 and show that $d \sigma=\sqrt{2} d A$. A similar (slightly different) formula also applies to problem 49.
2. Section 16.6: Problems 17, 19, 21, 25, 35, 37.
3. Section 16.7: Problems 1, 3, 6, 7, 13, 17, 19, 23, 28.

