Homework Assignment for Week 07

1. Section 14.3: Show that if $g(x, y)=\varepsilon_{1} \cdot\left(x-x_{0}\right)+\varepsilon_{2} \cdot\left(y-y_{0}\right)$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ then $g(x, y)=\varepsilon \cdot \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}$ and vice versa (the converse).
Here $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right)=(0,0,0)$.
Remark: An alternative expression of the above statement reads:
Show that

$$
o(1) \cdot \Delta x+o(1) \cdot \Delta y=o(1) \cdot \sqrt{\Delta x^{2}+\Delta y^{2}}
$$

or

$$
o(\Delta x)+o(\Delta y)=o\left(\sqrt{\Delta x^{2}+\Delta y^{2}}\right)
$$

where the $o(\cdot)$'s refer to $2 D$ limits as $(\Delta x, \Delta y) \rightarrow(0,0)$.
Hint: $\sqrt{\Delta x^{2}+\Delta y^{2}}=\frac{\Delta x}{\sqrt{\Delta x^{2}+\Delta y^{2}}} \Delta x+\frac{\Delta y}{\sqrt{\Delta x^{2}+\Delta y^{2}}} \Delta y$
2. Section 14.4: Problems 1, 7, 10, 21, 24, 29, 31, 43, 51.
3. Section 14.4: Suppose that $F(x, y, z)=0$ can implicitly define $x=f(y, z)$, or $y=$ $g(z, x)$, or $z=h(x, y)$ near some point $\left(x_{0}, y_{0}, z_{0}\right)$ with $F\left(x_{0}, y_{0}, z_{0}\right)=0$. (for example, $F(x, y, z)=x+2 y+3 z-4$ can $)$. Show that, for any such point $\left(x_{0}, y_{0}, z_{0}\right)$, we have

$$
\frac{\partial f}{\partial y} \frac{\partial g}{\partial z} \frac{\partial h}{\partial x}=\frac{\partial f}{\partial z} \frac{\partial g}{\partial x} \frac{\partial h}{\partial y}=-1
$$

Hint: Read Example 5 and Example 6.
4. Section 14.5: (homework problems for next week) Problems 9, 15, 19, 25, 27, 29, 35, 36, 40 (See page 850).

