Homework Assignment for Week 04

1. Section 10.7: 29, 33, 37, 40, 43, 47, 51, 55, 60.

Hint for problem 51: $x-2=x-5+3=3\left(1+\frac{x-5}{3}\right)$.
Remark on problem 55: Take the sentence "converges to $\sin x$ " for granted for now. part (c): first six terms means coefficients of $1, x, \cdots, x^{5}$.
2. Section 10.7: Find a power series that converges on $(1,3)$ and diverges otherwise. Do the same for $(1,3],[1,3)$ and $[1,3]$, respectively.
3. Section 10.8: Problems 5, 7, 15, 23, 29, 35.

Remark for problem 5, 7: Taylor polynomial of order n generated by f at a is simply the first $n+1$ terms of the Taylor series generated by f at a. See the definition on page 642. Do problem 5 and 7 for $n=3$.
Hint for problem 5: Another way of finding the answer (without performing all the derivatives) is to write $x=x-2+2=2\left(1+\frac{x-2}{2}\right)$ and the formula for geometric series.
Remark for problem 23: We know that $f(x)=\sum_{n=0}^{3} b_{n}(x-2)^{n}$ for some c_{n} 's (for example, one can conclude this by repeated division by $(x-2))$. Nevertheless, it is enough to assume $f(x)$ can be written in this form. Using a similar procedure as in page 6 of Lecture 08 note, one can show that the final answer is the same as $f(x)$ without explicitly knowing the values of c_{n}.
4. Section 10.8: Let

$$
f(x)= \begin{cases}0, & x=0 \\ e^{-1 / x^{2}}, & x \neq 0\end{cases}
$$

It is known that $f^{(n)}(0)=0$ for all n. Verify this for $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ (go through the details).

