Remarks on inverse functions with new notations

The purpose of this document is to derive the formula for derivative of inverse functions. Instead of the notation (from the textbook)

$$
\text { original function: } y=f(x), \quad \text { inverse function: } y=f^{-1}(x),
$$

we shall use the following notations

$$
\text { original function: } y=f(x), \quad \text { inverse function: } \underline{x=f^{-1}(y)},
$$

which is, in my opining, the better one.

Inverse Function of $y=f(x)$

A necessary and sufficient condition for

$$
f: D_{f} \longmapsto R_{f} \quad(f \text { maps from domain of } f \text { to range of } f)
$$

to have an inverse function is
" f is one-to-one and onto from domain of f to range of f "
If this is the case, we can define the inverse function

$$
f^{-1}: R_{f} \longmapsto D_{f} \quad\left(f^{-1} \text { maps from range of } f \text { to domain of } f\right)
$$

Proposition 1 If the inverse functions of f exists, then

- $f^{-1}(f(x))=x$, for all $x \in D_{f}$.
- $f\left(f^{-1}(y)\right)=y$, for all $y \in R_{f}$.

Notice that we have deliberately used a different notation (y) for the argument of f^{-1} to avoid possible confusion. This is different from the textbook.

It is better to use different letters (x and y) for elements in D_{f} and R_{f}. We will follow this notation through rest of this note.

The inverse function of $y=f(x)$ is thus denoted by $x=f^{-1}(y)$.
The exponential functions are one-to-one and onto from \mathbb{R} to \mathbb{R}^{+}. The inverse function, denote by $\log _{a}$ maps from \mathbb{R}^{+}to \mathbb{R}. Therefore

Proposition 2 We have

$$
\log _{a}\left(a^{x}\right)=x, \text { for all } x \in \mathbb{R}, \quad a^{\log _{a} y}=y, \text { for all } y \in \mathbb{R}^{+} .
$$

In particular,

$$
\ln \left(e^{x}\right)=x, \text { for all } x \in \mathbb{R}, \quad e^{\ln y}=y, \text { for all } y \in \mathbb{R}^{+} .
$$

Derivative of Inverse Functions and Logarithmic Functions

Since

$$
f^{-1}(f(x))=x \quad \text { for all } x \in D_{f}
$$

we take the x-derivative on both sides and use the chain rule to get

$$
\frac{d}{d y} f^{-1}(f(x)) \cdot \frac{d f(x)}{d x}=\frac{d}{d x} x=1
$$

In other words,

$$
\left.\frac{d}{d y} f^{-1}(y)\right|_{y=f(x)} \cdot\left(\frac{d f(x)}{d x}\right)=\frac{d}{d x} x=1
$$

that is,

$$
\begin{equation*}
\left.\frac{d}{d y} f^{-1}(y)\right|_{y=f(x)}=\frac{1}{\frac{d f(x)}{d x}} \tag{1}
\end{equation*}
$$

or just simply

$$
\begin{equation*}
\frac{d}{d y} f^{-1}(y)=\frac{1}{\frac{d f(x)}{d x}} \tag{2}
\end{equation*}
$$

and keep in mind that x and y in (2) are related to each other by $y=f(x)$ or $x=f^{-1}(y)$. Evaluating both sides of (2) at x gives (1). Evaluating them on y (so $x=f^{-1}(y)$) gives:

$$
\begin{equation*}
\frac{d}{d y} f^{-1}(y)=\frac{1}{\left.\frac{d f(x)}{d x}\right|_{x=f^{-1}(y)}} \tag{3}
\end{equation*}
$$

For example, if $y=f(x)=e^{x}$, then $f^{-1}(y)=\ln y$ and we have

$$
\left.\frac{d}{d y} \ln y\right|_{y=e^{x}}=\frac{1}{\frac{d}{d x} e^{x}}=\frac{1}{e^{x}}=\frac{1}{y} \quad y>0
$$

Note that the arguments y (of f^{-1}) and x (of f) are evaluated on different points: one on $f(x)$ and the other on x.

The following is WRONG due to confusion from bad notation:

$$
\frac{d}{d x} \ln x=\frac{1}{\frac{d}{d x} e^{x}}=\frac{1}{e^{x}}=e^{-x}
$$

Example 1 Let $f(x)=x^{3}-3 x^{2}-1, x \geq 2$. Find the value of $\frac{d f^{-1}(x)}{d x}$ at $x=-1=f(3)$.
Hint: to avoid confusion, it is better to change the problem to "Find the value of $\frac{d f^{-1}(y)}{d y}$ at $y=-1=f(3)$ ".

