Thomas' Calculus Early Transcendentals 13ed

Study guide for quiz 02

Quiz problems include both the lecture contents and homework problems.

- 1. Practice on variants of $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$.
- 2. Study the precise definitions of one-sided limit and continuity in terms of ε and δ .
- 3. Study the proof of Theorem 9, composition of continuous functions (in Lecture 4) and Theorem 10, limits of continuous functions (in textbook).
- 4. Study the Intermediate Value Theorem and its applications including root locating.

1 Brief answer and some common mistakes in section 2.5, problem 68

Given $\mathcal{E} = \frac{|f_{co}|}{2} > 0$, there exists $\mathcal{F} > 0$ such that $0 < |X-C| < \mathcal{F} \Rightarrow |\frac{f_{co}}{2} - \frac{f_{co}}{2}| < \mathcal{E} \Rightarrow \quad \partial \mathcal{E} \ C, \ L_{ran} \ f_{co} = f_{co}$ Here $\mathcal{E} = \mathcal{E} = \mathcal{E}$ $\frac{|f_{col}|}{2} < f_{col} - f_{tco} < \frac{|f_{col}|}{2} = 0 \quad \text{if } f_{tcol} > 0 :$ $\frac{|f_{col}|}{2} + f_{col} < f_{col} < \frac{|f_{col}|}{2} + f_{tcol} = 0 < -\frac{f_{col}}{2} + f_{tcol} < f_{col} + f_{tcol} < f_{col} < \frac{f_{col}}{2} + f_{tcol} < \frac{f_{col}}{2} + f_{col} < \frac{f_{col}}{2} = \frac{f_{col}}{2} < 0$ $(3) \quad \text{if } f_{tcol} < 0 :$ $f_{col} < \frac{f_{col}}{2} = \frac{f_{col}}{2} < 0$ for XE(1-8, c+8)

Figure 1: Correct answer section 2.5, problem 68 (only minor mistake)

68 suppose f(c) > 0 · by continuity, for any ε there exists a such that $0 < |X-c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$ $0 < |X-c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$ $0 < |X-c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$ take $\varepsilon = \frac{f(0)}{2} \Rightarrow \frac{1}{2} f(c) < \frac{1}{2} f(c)$ if $0 < |X-c| < \delta$ $\therefore f(x)$ have the same sign as $f(c) = \frac{1}{2} f(c) < 0$ take $\varepsilon = -\frac{f(c)}{2}$

Figure 2: Most common mistake of section 2.5, problem 68