Study guide for Midterm 01

Review the study guides for quiz 01-quiz 03. They are all relevant for midterm 01.

1. Section 2.2: Review Limit laws, technique of rationalizing numerator or denominator to find the limit of the form $\frac{0}{0}$. Review statement and applications of Sandwich Theorem. Keep in mind typical examples of ' $\lim _{x \rightarrow c} f(x)$ does not exist'.
2. Section 2.3: Memorize the precise definition of $\lim _{x \rightarrow c}=L$ using ε and δ. Study how to prove $\lim _{x \rightarrow c} f(x)=L$ using standard tricks such as the $\epsilon / 2$ argument.
3. Section 2.4: Study the precise definitions of one-sided limit. Practice on variants of $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}$.
4. Section 2.5: Study the precise definitions of continuity in terms of ε and δ. Study the proof of Theorem 9, composition of continuous functions (in Lecture 4) and Theorem 10 , limits of continuous functions (in textbook). Study the Intermediate Value Theorem and its applications including root locating.
5. Section 2.6: Study definition of the limits in p119, p125, p131 and problem 6, homework 04. Find an example for each and for practice proving with these definitions.
6. Section 3.2: Study the definition of derivative, one-sided derivatives, and relation between differentiability and continuity (Theorem 1 and proof).
7. Section 3.3: Study derivative product rule, derivative quotient rule and applications such as

$$
\frac{d^{n}}{d x^{n}}(f(x) g(x))=?, \quad \frac{d}{d x}\left(f_{1}(x) f_{2}(x) \cdots f_{n}(x)\right)=?
$$

and derivative of determinants, etc.
8. Section 3.5: Review the definitions and algebraic identities of trigonometric functions listed in page 1-2 of Lecture 07. Study the derivation of $\frac{d}{d x} \sin x, \frac{d}{d x} \cos x$ and memorize the derivatives of all six trigonometric functions.
9. Section 3.6: Practice on derivative of composite functions: $\frac{d}{d x} f_{1}\left(f_{2}\left(\cdots f_{n}(x)\right)\right)$ where the functions $f_{1}, f_{2}, \cdots f_{n}$ are elementary functions such as polynomials, trigonometric functions, exponential functions or their combinations.
10. Section 3.7: Study how to find derivative of a function through implicit differentiation. Also study higher order derivatives. In other words, how to find $\frac{d^{n}}{d x^{n}} f(x)$, when the function $y=f(x)$ is defined implicitly through $\{(x, y) \mid F(x, y)=0\}$ with a given function F.
11. Section 3.8: Study how to derive for derivative of inverse functions. Memorize the result. Practice the trick of writing $x=e^{\ln x}$ in various applications.

