Calculus I, Fall 2021

Brief solutions to Quiz 9

Jan 04, 2022

1. Solve for $y' + (\tan x)y = \cos x$, y(0) = 1.

Ans:

Multiply the equation by $\exp(\int \tan x \, dx) = \frac{1}{|\cos x|} = \pm \frac{1}{\cos x}$. $\frac{1}{\cos x}y' + \frac{\sin x}{\cos^2 x}y = 1,$ $(\frac{y}{\cos x})' = 1,$ $\frac{y}{\cos x} = x + C, \ y(0) = 1, \ \text{therefore } C = 1.$ $y = (x+1)\cos x.$

2. Evaluate $\int_{1}^{2} \frac{\cosh(\ln t)}{t} dt$.

Ans:

$$= \int_{1}^{2} \cosh(\ln t) d(\ln t) = \sinh(\ln t) \Big|_{1}^{2} = \sinh(\ln 2) (= \frac{3}{4}).$$

3. Order the functions n, $\sqrt{n} \log_2 n$, $(\log_2 n)^5$ by rate of growth as $n \to \infty$. You can use the notations $a \ll b$ to say b grows faster than a, and $a \approx b$ to say a and b grow at the same rate.

Ans:

Use L'Hôpital's Rule to find $\lim_{n \to \infty} \frac{\ln n}{n^{\frac{1}{8}}} = 0 \implies \lim_{n \to \infty} \frac{(\ln n)^4}{n^{\frac{1}{2}}} = 0 \implies \sqrt{n} \ll (\log_2 n)^4.$ Therefore $(\log_2 n)^5 \ll \sqrt{n} \log_2 n.$

Similarly, from L'Hôpital's Rule $\lim_{n\to\infty} \frac{\ln n}{n^{\frac{1}{2}}} = 0$, therefore $\sqrt{n}\log_2 n \ll n$. Answer: $(\log_2 n)^5 \ll \sqrt{n}\log_2 n \ll n$.