Brief solutions to Quiz 9

Jan 04, 2022

1. Solve for $y^{\prime}+(\tan x) y=\cos x, y(0)=1$.

Ans:
Multiply the equation by $\exp \left(\int \tan x d x\right)=\frac{1}{|\cos x|}= \pm \frac{1}{\cos x}$.
$\frac{1}{\cos x} y^{\prime}+\frac{\sin x}{\cos ^{2} x} y=1$,
$\left(\frac{y}{\cos x}\right)^{\prime}=1$,
$\frac{y}{\cos x}=x+C, y(0)=1$, therefore $C=1$.
$y=(x+1) \cos x$.
2. Evaluate $\int_{1}^{2} \frac{\cosh (\ln t)}{t} d t$.

Ans:
$=\int_{1}^{2} \cosh (\ln t) d(\ln t)=\left.\sinh (\ln t)\right|_{1} ^{2}=\sinh (\ln 2)\left(=\frac{3}{4}\right)$.
3. Order the functions $n, \sqrt{n} \log _{2} n,\left(\log _{2} n\right)^{5}$ by rate of growth as $n \rightarrow \infty$. You can use the notations $a \ll b$ to say b grows faster than a, and $a \approx b$ to say a and b grow at the same rate.
Ans:
Use L'Hôpital's Rule to find $\lim _{n \rightarrow \infty} \frac{\ln n}{n^{\frac{1}{8}}}=0 \Longrightarrow \lim _{n \rightarrow \infty} \frac{(\ln n)^{4}}{n^{\frac{1}{2}}}=0 \Longrightarrow \sqrt{n} \ll\left(\log _{2} n\right)^{4}$.
Therefore $\left(\log _{2} n\right)^{5} \ll \sqrt{n} \log _{2} n$.
Similarly, from L'Hôpital's Rule $\lim _{n \rightarrow \infty} \frac{\ln n}{n^{\frac{1}{2}}}=0$, therefore $\sqrt{n} \log _{2} n \ll n$.
Answer: $\left(\log _{2} n\right)^{5} \ll \sqrt{n} \log _{2} n \ll n$.

